黄河流量の減少に対する渤海の淡水・栄養塩収支の応答

林美鶴(神戸大学・内海域環境教育研究センター)

柳 哲雄(九州大学・応用力学研究所)

郭 新宇(愛媛大学・沿岸環境科学研究センター)

1.はじめに

黄河の河川流量の減少が、渤海の海水交換や物質循環、低次生物生産環境に与える影響を把握 するため、1980年代と1990年代の現場観測値(唐・孟、Atlas of the ecological environment and living resources in the Bohai Sea、青島出版)を用いて、黄河河口域の淡水収支計算、栄養塩観 測データの解析、栄養塩収支計算を行った。

現場観測は 1982 年 5 月、8 月、10 月、1983 年 2 月及び 1992 年 8 月、10 月、1993 年 2 月、 5 月に実施された。観測項目は、水温、塩分、溶存無機窒素・リン・珪素、クロロフィル濃度な どである。表層と底層で観測されたデータを用いて、

図1に示すような水平分布図が描かれているので、 この図から値を読みとった。

図1は1982年8月の表層塩分分布を示しており、 黄河から流入する淡水は河口のある菜州湾を中心 に広がっていることが解る。このことから、黄河か らの淡水が影響する範囲として、菜州湾奥から 150kmの範囲を解析対象海域、150km~300kmの 範囲を隣接海域とした。

2.淡水収支

対象海域の淡水収支及び塩分収支は次式で表せる。

$$\frac{dV_s/dt = V_Q + V_P + V_E + V_G + V_O + V_R}{\frac{d(V_s S_s)}{dt} = V_R S_R + V_X (S_o - S_s)}$$

図1 解析領域(Box)と隣接海域

ここで V_S は対象海域の容積、 V_Q は河川流量、 V_P は降水量、 V_E は蒸発量、 V_G は地下水流量、 V_O はその他の淡水負荷量、 V_R は隣接海域への海水流出量、 S_S は対象海域の塩分、 S_0 は隣接海域の 塩分、 S_R は両塩分の平均($S_R = (S_S + S_0)/2$)、 V_x は両海域間の海水の水平交換量を表す。 V_Q は 図 2 の通りで、 $V_P \ge V_E$ は ECMWF (European Center for the Medium Weather Forecast)デー タから見積もり、 $V_G \ge V_O$ は0 として、両式から $V_R \ge V_X$ を求めた。結果を図 3 及び図 4 に示す。

尚両者は、各季節から季節の移行期の値として 求められるが、両年とも8月と10月の塩分差 が流出量に比べ大きいため、この間は適切な解 を求めることが出来なかった。さらに、海水の 平均滞留時間 sと黄河から流入した淡水の平 均滞留時間 fも次式で求められる。結果を図5 及び図6に示す。

River discharge

河川流量の減少に伴い流出量も減少し、水平交換量が少なくなって海水の滞留時間が長くなった。また、河川流量の減少と水平交換量の低下により、黄河から供給された淡水の平均滞留時間 も長くなった。これは黄河からの淡水供給量が変化したことに起因する。河川流量の減少により 対象海域である黄河河口の表層塩分(図7)が上昇し、河口と隣接海域の密度勾配が小さくなっ た。このため河口循環流が弱くなり、水平交換量が少なったと考えられる。この河口循環流の弱 化は対象海域底層の塩分(図8)が低下していることでも裏付けられる。

3. 栄養塩観測値

図 9 に、表底層を平均した、対象海域(左側)と隣接海域(右側)の溶存無機態窒素(DIN)、 溶存無機態リン(DIP)及び DIN/DIP 比を示す。80 年代から 90 年代にかけて、DIN 濃度は上昇し、 DIP 濃度は減少した。このため、80 年代は DIN/DIP 比がレッドフィールド比(16)を下回ってい たが、90年代は、DIN/DIP 比がレッドフィールド比を上回った。但し80年代のDIN 濃度は半 飽和定数を上回っており、一次生産は窒素律速とは言い切れない。一方90年代のDIP 濃度は半 飽和定数を下回っていることから、基礎生産はリン律速されていると考えられる。瀬戸内海では、 大阪湾の様な富栄養化海域では基礎生産がリンに律速され、周防灘の様に比較的貧栄養な海域で は窒素に律速される傾向がある。これは大阪湾には河川経由の人為起源の栄養塩負荷、特に窒素 の負荷が多いのに対し、周防灘では河川からの栄養塩負荷量が少ないためであるが、黄河河口域 では流量の減少した90年代にリン律速となっていることから、瀬戸内海とは異なるシステムが働 いていると考えられる。いずれにせよ、この様な基礎生産の律速栄養塩の変化原因を明らかにす るためには、数値生態系モデルによる解析が必要である。

図 10 に対象海域の基礎生産量、図 11 にクロロフィル濃度、図 12 に水温を示す。80 年代の基礎生産量とクロロフィル濃度の季節変動は水温の季節変動と連動傾向があり、基礎生産に対する制限要因としては、栄養塩(窒素)よりも水温が支配的であったと考えられる。80 年代から 90 年代にかけて、8 月と 10 月の基礎生産量とクロロフィル濃度が減少し、90 年代は季節変動が小さくなっている。これは、90 年代は栄養塩(リン)による制限が大きくなったためだと考えられる。また、2 月は水温低下のため基礎生産が小さいが、2 月よりも水温が高い5 月は、2 月よりも基礎生産が小さい。この原因は不明である。

図 9 対象海域(左)と隣接海域(右)の溶存無機態窒素(DIN)、溶存無機態リン(DIP)、DIN/DIP 比

$$d(VY)/dt = V_Q Y_Q + V_G Y_G + V_O Y_O + V_P Y_P$$
$$+ V_R Y_R + V_X (Y_o - Y_s) + \Delta Y$$

ここで、Y は栄養塩濃度を表し、添え字は淡水収 支と同じである。また Y は生化学過程、すなわ ち生産と分解や溶出の収支を表す。

Y 以外の項は観測や他の見積もりから求められので、生化学過程による物質収支を求めることが出来る。ここで窒素は、水中で気体(№ や №O)としても存在するが、リンは存在しない。よって、リンについて求めた DIP が正であれば、分解 + 溶出が生産を上回り、 DIP が負であれば 分解 + 溶出が生産より下回っていることを表す。 Y は窒素についても求めることが出来る。また、リンについて求めた DIP とレッドフィールド比から DIN を見積もることが出来る。この様にして求めた両者の差、すなわち Y - DIP × 16 は、窒素固定と脱窒の差を表し、これが正であれば窒素固定が脱窒を上回り、負であれば脱窒が窒素固定を上回ることを表す。

図 13 に分解 + 溶出量と生産量との差を、図 14 に窒素固定量と脱窒量との差を示す。両者から、 80 年代は分解や溶出よりも生産の方が大きく、且つ脱窒より窒素固定が大きい。一方、90 年代 は分解や溶出と生産はほぼバランスし、且つ窒素固定より脱窒が大きい。この結果は、90 年代は 基礎生産が減少し、DIN 濃度が上昇しているという観測結果と一致する。