

September 14-16, 2011, Kyoto International Conference Center

Decadal Change in East Asian Monsoon Climate System: Natural Variability vs Anthropogenic Forcing

Xiuqun Yang xqyang@nju.edu.cn

Institute for Climate and Global Change Research, School of Atmospheric Sciences, Nanjing University, Nanjing 210093, CHINA

Why emphasize the decadal change?

Natural signature vs. anthropogenic forcing

Schematic illustrating progression from initial value problems with daily weather forecasts at one end, and multidecadal to century projections as a forced boundary condition problem at the other, with seasonal and decadal prediction in between What is the observed decadal change in East Asian monsoon climate system ?

• Can such a decadal change be considered as natural variability (say, the PDO's impact)?

• What is the role of increased CO2 and aerosols?

Climatological East Asian Summer Monsoon

Winter (DJF)

Interdecadal variabilities of 9-yr running averaged precipitation in eastern China since 1900

1900 1905 1910 1915 1920 1925 1930 1935 1940 1945 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000

Decadal weakening of East Asian summer monsoon and southward shift of rainbelt in China

Decadal change of EASM rainfall (1948-2004) over whole East Asian domain

Post-1976 minus Pre-1976

Wang, Ding, Jhun 2006 GRL

Persistent flooding/drought is one of challenges for the sustainable development in China

Persistent raining (2008)

Persistent drought (2009/2010/2011)

What is the observed decadal change in East Asian monsoon climate system ?

Can such a decadal change be considered as natural variability (say, the PDO's impact)?

• What is the role of increased CO2 and aerosols?

Possible causes responsible for the weakening of the EASM

Basin-scale air-sea interaction signatures in the Pacific

El Niño/Southern Oscillation

Pacific Decadal Oscillation

Interannual Signature

Decadal-to-interdecadal Signature

Basin-scale pattern of PDO

Warming in the tropical Indian and Pacific Oceans, while cooling in the North Pacific

Relationship among precipitation in northern China, SOI, IPO and PDO

Atmospheric thermal anomalies related to EASM's weakening

Yang and Zhang, 2011

V850 vs Temp (500-200hPa) - ERA-40

Diabatic heating anomalies related to EASM's weakening

Yang and Zhang, 2011

Vertically-integrated diabatic heating - ERA-40

EOF Mode(1) Qp 13.90%

Simulated response of EASM to historical SSTs with CAM3/NCAR

Li, Dai and Zhou, Clim Dyn, 2010

SST anomalies related to EASM's weakening PDO-related SSTA pattern

Yang and Zhang, 2011

Relative role of SSTA in each tropical basin in EASM's weakening

Yang and Zhang, 2011

SSTA only in the tropical eastern Pacific (TPO-only)

CCM3-simulated decadal change with prescribed observed SST for 1949-98 Post-77 minus pre-1977

Relative role of SSTA in each tropical basin in EASM's weakening

Yang and Zhang, 2011

SSTA only in the Tropical Indian Ocean (TIO-only)

CCM3-simulated decadal change with prescribed observed SST for 1949-98 Post-77 minus pre-1977

What is the observed decadal change in East Asian monsoon climate system ?

• Can such a decadal change be considered as natural variability (say, the PDO's impact)?

What is the role of increased CO2 and aerosols?

Increased anthropogenic forcing in East Asia

Urbanization induces rapid land use/cover change and aerosol increase in China

What is role of anthropogenic forcing in east Asia?

Uncertainties in RF estimation are mostly due to regional human activities

IPCC/AR4估计的全球平均的辐射强迫 及其不确定性

IPCC/AR4估计的对流层顶和表面 全球辐射强迫空间分布

The EASM index change in six coupled climate models for scenario SRES A2

Most of models show an intensified EASM

The EASM precipitation change simulated by climate model with different scenarios of emissions

Increased precipitation in northern China, rather than along Yangtze River valley

(Wei, 2005)

22 coupled climate models (IPCC AR4)

Simulated precipitation change by -0.6 % ~ 14 %, mainly over northern China, Korea and Japan, associated with an enhanced EASM

(Kripalani et al, 2006)

Regional climate model

Doubling of CO₂ concentration induces a weakened EA winter monsoon,

BUT an enhanced EA summer monsoon

⁽Chen, Pollard and Barron, JC 2004)

Regional climate model

Ē

Doubling of CO2 concentration induces an increased precipitation in northern China

Global BC Emissions

(Tami Bond, 2002)

Previous simulation with aerosol's direct effect

Menon et al., 2002

BC-induced increased summer rainfall in southern China, decreased rainfall in northern China

Fig. 1. Incremental aerosol optical depth $\Delta \tau_{aer}$ (0.55 μ m), which is used to drive the climate change simulations. Latitude and longitude are denoted.

Previous simulation with aerosol's direct effect

Lau, 2006

Enhanced Indian monsoon by the mechanism of "elevated heat pump" of Tibetan Plateau.

East Asia (Mei-yu) rain belt shifted north westward, suppressing rainfall over East Asia and the adjacent oceanic regions.

Fig. 6 Spatial distribution of JJA anomalies in the Asian monsoon region due to aerosols for **a** precipitation (mm day⁻¹), and **b** sea level pressure (hPa) and 850 hPa winds (ms⁻¹)

Current simulation with aerosol's direct and indirect effects

Microphysics and modal aerosols permit the study of aerosol indirect effects

CAM4

CAM5

Change in Aerosol Optical Depth (AOD) between Present day (PD) and Pre-industrial day (PI)

PD-PI Aerosol Optical Depth (JJA)

0.05

0.1

0.15

0.2

Changes in Asian summer monsoon

140E

Surface temperature

850hPa wind & Precipitation

Vertically-integrated temperature

10N 5N

Changes in Radiative Forcing

50N

Clear sky solar radiation for atmosphere

Clear Sky atmosphere Solar flux

0

3

Aerosol's radiative effect

Aerosol's cloud-microphysical effect

Aerosol's cloud-microphysical effect

What is the observed decadal change in East Asian monsoon climate system ?

• Can such a decadal change be considered as natural variability (say, the PDO's impact)?

• What is the role of increased CO2 and aerosols?

- The East Asian summer monsoon (EASM) has been experiencing a considerable decadal weakening since the end of 1970s with a significant southward shift of increased precipitation in East Asia.
- Such a decadal change has caused serious consequences by increasing drought and/or flooding and altering water resource distribution, which can affect the sustainable development in East Asian region.
- The EASM weakening is closely related to the tropical ocean warming. Its role exhibits considerably basin-dependent. The tropical eastern Pacific warming tends to weaken EASM, while the tropical Indian ocean warming plays an opposite role.

- Most of the IPCC AR4 models show that the increased CO2 tends to enhance the EASM, which can not be used to explain the observed EASM weakening.
- The state-of-the-art model with aerosol direct and indirect effects shows that increased anthropogenic aerosols tend to weaken East Asian summer monsoon with precipitation shifted to southern China and adjacent oceanic regions by reducing land-sea thermal contrast, which is mostly caused by the aerosol's radiative effect.
- The model also shows that the increased anthropogenic aerosols tend to reduce the precipitation over most of the land areas, especially over Southeast Asian sub-continents , which is mostly related to aerosol's cloud-microphysical (indirect) effect (i.e., the decreased droplet effective radius).

Thanks for your attention