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ACTIVITY REPORT FOR HARRAN AND ADIYAMAN TEAM 

 

MEETING I 

Meeting for training of farmers and WUA 

 

Organizers:DSİ, Harran University 

Participants: Governor, general director of DSİ, Rector, other protocol members 

                      Farmers, WUA, Agricultural engineers,  

 

Date: April 4, 2013, DSİ Meeting room, One Day. Sanliurfa,Turkey 

Chair. Dr. Mehmet Ali Cullu 

One speaker: Dr. Mehmet Ali Cullu 

Title of speach: Salinization at the Harran Plain and statues of the GAP Region 

At the speach, Some RIHN C09 Project outcomes made in the presentation. 

 

MEETING II 

Meeting for Awareness for Drainage and Salinization at the Harran: 

Agricultural Perspective for 2023 

 

Organizers:Ministry of Food, Agriculture and Livestock, Harran University 

Participants: Governor, General Director of Aricultural Reform, Rector, other protocol 

members, DSİ Members, Members of Food Agriculture and Livestock Directory, Farmers, 

technical personels, WUA, Agricultural enginers, farmers. 

 

Date: December 28-March 2, 2013, Harran University Agricultural Faculty Meeting room, 

Sanliurfa,Turkey 

Chair. Dr. Mehmet Ali Cullu 

Some comments about RIHN C09 Project outcomes made at the meeting and opened to 

discussion. 
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MEETING III 

Organizers: Adiyaman University. The Sustainable Water Use in GAP Region, TEMA 

Training Programme for Primary School Teachers. Dr. Erhan Akça made a presentation for 

the outcomes of RIHN C09 Project 

Date: 25 May 2013, Adıyaman University Highschool Conference Hall 

 

Paper accepted: 

 Erhan Akça, Mehmet Ali Çullu, Takanori Nagano, Tsugihiro Watanabe, Selim Kapur and 

Suha Berberoglu. International World Irrigation Forum. Sep. 28-5 Oct., 2013 

 Anatolian Anthroscape: A Model for Natural Resource Management 

141. Category: Rainfall Management (Water Harvesting) 

  Track   : Workshop 2. Developing Management Strategies for Coping with Drought and 

Water Scarcity 

 

 

Published Some Paper related C-09 project 

 

Cullu M. A, A. V. Bilgili, A. Almaca, A.R. Ozturkmen, A. Aydemir, S. Aydemir, M. 

Aydoğdu, Y. Şahin, S. Karakaş Dikilitaş, A. R. Mermut. 2012. Mapping of Salt 

Affected Lands Using Combination of Remote Sensing, GIS and Classical Methods: A 

Case Study in the Harran Plain.8th International soil Science Congress on “Land 

Dagradation and Challenges in Sustainable Soil Management”. P:140-145. May 15-17. 

Çeşme  İzmir Türkey. 

Bilgili, A. V. M. A. Cullu, A. Aydemir, S. Aydemir,  A. Almaca.2012. Probability Mapping 

of Saline and Sodic Soils in The Harran Plain Using a Non Linear Kriging Technique. 

8th International soil Science Congress on “Land Dagradation and Challenges in 

Sustainable Soil Management”. P:128-134. May 15-17. Çeşme  İzmir Türkey. Ali V. 

Bilgili, "Spatial assessment of soil salinity in the Harran Plain using multiple kriging 

techniques",2013. Environmental Monitoring Asssessment, 185, 777-795 pp.,  , DOI: 

10.1007/s10661-012-2591-3. 

Ali Volkan Bilgili, Aydın Aydemir, Osman Sönmez and Mehmet Ali Çullu. 2013. 

"Comparison Of  Three Laboratory And Regression Kriging Method For Quantitative And 
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Qualitative Assessment Of Soil Salinity In The Harran Plain, SE Turkey", Fresinius 

Environmental Bulletin (ISI) , 22, 1339-1350 pp., 

 Ali V. Bilgili, "Spatial assessment of soil salinity in the Harran Plain using multiple kriging 

techniques",2013. Environmental Monitoring Asssessment, 185, 777-795 pp.,  , DOI: 

10.1007/s10661-012-2591-3. 
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C09 HARRAN PROJECT ACTIVITIES 

1. AREA DESCRIPTION 

The Harran is the biggest fertile plain of Southeastern Anatolia Project (GAP) 

which comprises 161000 ha irrigable land (Figure 1). The plain is under the semiarid 

climate regime and it is dominated by clay-textured soils. Irrigation started in the plain 

using water coming from Atatürk Dam since 1995. With irrigation, there is striking 

change in the crop pattern in the Harran Plain. Before irrigation, wheat, barley and 

lentil were the main crops. The Harran Plain faces problems of salinity due to 

excessive and uncontrolled irrigation, an inadequate drainage system and as a 

consequence of these, an increased groundwater level appears 

 

 

 

 

 

 

 

 

 

 Figure 1. Location of the Study Area 

2. FIELD STUDIES, SOIL EC ANALYSES AND SALINITY MAPPING 

Approximately 30 % of the plain is affected by the shallow water table and 10 % of the plain 

isaffected by salinity. In order to determine recent salinity status of the plain, about 100 soil 

samples were collected from the soil surface (0-30 cm depth) and prepared for analyses. 

Location of soil samples are shown on the satellite image (Figure 2). Their analayses for 

salinity mapping were completed and salinity map are being delineated. In order to 
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determine the salinity severity, exchangeable Na, and cation Exchange capacity (CEC) 

analyses are also being continued. 

 

 

 

 

 

 

 

 

 

 

Figure 2. Location of the collected soil samples. 

Salt content of all the soil samples were evaluated according to their EC levels. They 

are shown at the Figure 3. The salinity level of the targeted area were changed 

between 1 and 52 dS/m. Soil salinity is an increasing threat for yield and also a major 

factor in reducing plant productivity; therefore, it is necessary to better understand the 

reasons for its development. Crops have different salt tolerances. All crops have a 

maximum salt level they can tolerate without a yield loss. Salt levels above a crop's 

maximum tolerance level sharply reduce yields. The yield loss starts at the EC level 

of 4 dS/m and yield loss increases with the increase of EC values. Because of the 

high salt content of the Harran plain, considerable yield losses have been observed. 

According to soil EC levels and other field studies, salinity map of the targeted areas are 

being prepared 
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Figure 3. Salinity Levels of the Targeted Lands  

This map will be integrated with landuse type and yield loss will be determined for the year 

of 2012. 

The analyses results of the soil salinity showed that majority of the soil ECs were over the 

plant tolerance. These findings are valuable data for choosing landuse type and soil to 

improve processes. 

3. DESCRIPTIVE AND GEOSTATISTICAL ANALYSES OF THE SALINITY DATA  

At the same time, soil samples were prepared for NIRS analyses to compare with classical 

analyses results. Soil sampling has been performed in the salt affected areas of the Harran 

Plain. Figure 4 shows the distribution of soil salinity variables of soil pH and EC and also EM 

values.Accordingly, soil salinity variables of EC and pH showed a broad range covering 

different soil salinity groups such as saline, saline-alkaline and alkaline. 
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  Figure 4. Distributions of soil pH and EC (ds m-1) and EM values (vertical readings) 
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The obtained values are representing the final status of soils located saline areas of the 

Harran plain after drainage. pH values ranged from 7.14 to 8.58 and showed a normal 

distribution, whereas soil EC showed a right skewed distribution ranging from 0.59 to 52.8 ds 

m-1.  EM values showed a distribution as paralel to soil EC values ranging from 30 to 575, 

which was also broad as soil EC and pH indicating that soils can be in classes of both saline 

and alkaline.  

3.1. Variogram Analyses Of Soil Salinity Parameters And Kriging Mapping 

The results of variogram analyses of soil salinity parameters are shown in figure 5.  

 

Variogram of soil EC ds m-1 

 

Variogram of  soil pH 

 

Variogram of soil EM values 

Figure 5. Experimental variaograms of  soil salinity variables and EM values 
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Table 1. Variogram parameters of available soil salinity variables and EM values  

Variables Model Range Nugget Partial sill Sill Nugget/Sill 

EC dS m-1† Spherical 2334 0.50 1.01 1.51 0.49 

pH Exponential 883 0.026 0.065 0.091 0.40 

EM Exponetial 650 1005 11498 12503 0.087 

† log of soil EC 

Variogram parameters of soil salinity variables of pH and EC and EM are shown in table 1. 

Accordingly, soil EC and pH showed a moderatelly strong spatial distribution while EM 

showed a strong spatial distribution giving a very low nugget to sill ratio. 

Figure 6 shows the maps of soil salinity variables and EM obtained using ordinary kriging 

methods. The maps of soil EC and EM showed similarity giving areas affected by different 

levels of salinity. Soil pH map showes affected areas by salinity and also alkalinity.
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Figure 6.  Kriging Maps of Soil salinity Variables and EM Values. Maps With Corresponding Legends hows Salt Affected Locations. 
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4. CALIBRATION OF EM-38 AND SOIL SALINITY CHARACTERIZATION 

The potential use of EM equipment in the monitoring the soil salinity in the plain were 

evaluated. The calibration results between laboratory measured soil EC values and EM-38 

readings is shown in Figure 7. As seen the figures, EM-38 gave promising results for 

monitorization of soil salinity. On the other hand, seperating and evaluating the data based 

on the different sampling days showed that the better results can be obtained only when the 

calibration could be performed using the same day data and samples taken from similar soil 

series could be used (Figure 7). 

A 

 

Calibration of EM – 38 using whole data 

B 

 

Calibration of EM– 38 using only first day sampling data 

          Figure 7. Relationship Between EM-38 Readings and Soil EC Values  
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5. IRRIGATION AND DRAINAGE WATER QUALITY 

5.1. Irrigation Water Quality 

In order to determine the water quality, water samples from irrigation and drainage water 

were collected and their analyses were completed (Figure 8). Salt content of the irrigation 

water is a considerable affecting factor on soil salinity increases. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                           Figure 8. Irrigation Water Quality Analyses 
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Not only shallow water table effect the soil salinity accumulation at the root depth, 

also water salt content is another affecting parameter. At the Harran Plain, there were 

3 groups of irrigation water: 

a) Fresh irrigation water coming from the Atatürk Dam 

b) Reused water coming from the main canal 

c) Drainage water coming from the drainage canal  

According to graph on the Figure 8., analyses results of water quality of both fresh 

and reused irrigation waters showed that values are over the standart irrigation water 

quality. 

5.2. Drainage Water Quality 

After irrigation started in 1995 from Atatürk Dam, cotton (Gossypium hirsutum L.) was 

chosen as a main crop due to its high income potential. Considering the general 

perception that the greater the amount of water used for irrigation is, the greater 

production will be, farmers used excess water with furrow irrigation methods. 

Irrigation in the area has caused a high water table and caused fluctuations in the 

groundwater levels and its quality (Figure 9). 

 

                             Figure 9. Excessive Irrigation and Yield Losses 
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At the some part of the plain, drainage water were used for irrigation. Because of the 

excessive irrigation at the upper places, water can not reach to the areas at lower 

places of the plain and so farmers used drainage water at some locations. Anaylses 

results of collected water also showed quite high salt content (Figure 10). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Drainage Water Quality Analyses 
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6. LANDUSE MAPPING 

At the end of 2012, approximately 150000 ha of the Harran Plain will be under 

irrigation. The value added per capita in the agricultural sector of this area has more 

than tripled with irrigation. Cotton, maize, wheat and vegetable planted area showed 

considerable increases. In order to determine landuse map of the plain, 3 temporal 

SPOT satellite images were obtained. Satellite images were loaded to computer and 

interpreted for ground control. For each crops planted at the field, ground point data 

were collected using the enhanced image and GPS data (Figure 11). Landuse map 

will be created for 2012 using supervised classification technique.   

 

 

 

 

 

 

 

 

 

 

 

Figure 11. Ground Control Points (GCP) For Landuse Classification 

 
The landuse map will be integreted with salinity map for determination of the yield 

decreases. These data gives a valuable knowledge for economical losses. 

 

 

HARRAN PLAIN 



C09 ADIYAMAN PROJECT ACTIVITIES 
Adıyaman region represents the upstream of Atatürk Dam (Figure 1) and even within GAP 

Project irrigation scheme is not sufficient for irrigating majority of arable lands. The economy is 
dependent on agricultural activities (app. 85%) and rainfed agriculture is the main management in 
the site (Table 1). The general land use map of the region was prepared (Figure 2)   

  

Figure 1. Project Site and location of Atatürk Dam 

 

Figure 2. The general land use map of Adıyaman Region 
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Table 1. Land Use in Adıyaman Region 

 

However there is a high pressure on politicians, local administrators and institutions (DSI, Regional 
Agricultural Directorate) for increasing irrigated land since local people believe irrigation is wealth.  

Within C09 Project, the Adıyaman University Project members undertake 3 main activities during 
March – August 2012 which are data collection on soil and waters, determination and comparison of 
land use and social interviews.  

I. SOIL AND WATER  
1. SOILS 

The region has in general have sloping lands, thus prime soils cover less than 10% of the total arable 
land. Three major sites were chosen for sampling for determination of land use vs soil quality. 

a. Rain fed soils – for centuries 
b. Irrigated soils – more than 50 years 
c. Recent irrigated soils – irrigated for the last 20 years within GAP or regional projects, or 

private enterprises. 
 

A. Rain Fed Soils 

Main land use in rainfed soils are cereals, vineyard, tobacco, pistachio nut and fig. Rainfed soils are 
mainly distributed in northern part of Adıyaman town, and Gerger, Sİncik, Besni and Tut ie 
mountainous towns. 40 soil samples were collected at various land use types. The major soil quality 
indicator is organic matter. The highest organic matter was determined at fig plantation (Table 2). 
However the average organic matter contents of soils are below 2%.  The major problem in rain fed 
areas is soil erosion (Figure 3, 4). Other than erosion, shallow depth and organic matter issues no 
salinity, pH problems were identified at rain fed soils.  

Table 2. The average organic matter content of rain fed soils  

Land use Organic matter (%) 
Cereal 1.03 
Vineyard 1,12 
Pistachio nut 1.32 
Fig 1.47 
Tobacco 1,14 
Fallow 1,17 
 

Land Use Irrigated Rainfed Total Cultivated
ha ha ha

Field Crops 42.439 16,83 164.366 65,2 206.806 82,03
Orchards 3.182 1,26 36.118 14,33 39.302 15,59
Vegetables 3.650 1,45 836 0,33 4.488 1,78
Fallow  1.502 0,6 1.502 0,6
Total 49.271 19,55 202.822 80,45 252.098 100

% % %
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Figure 2. Eroded lands in Kahta 

 

Figure 4. Rain fed agriculture practices in Tut 

B. Irrigated Soils 

Adıyaman is quite rich for its surface and ground waters due to the topographic properties ie the 
northern mountainous area stores rain and snow waters and discharges to Adıyaman region. Thus, 
irrigation has a long history in the area even not spread to large areas. The main crop irrigated is 
cotton followed by vegetables. Tobacco at terraced soils are also irrigated. The organic matters at 
irrigated sites particularly vegetable growing sites in Gölbaşı and Adıyaman have the highest value. 
Cereals are rarely irrigated but at irrigated sites soils’ organic matter is higher than rain fed sites 
(Figure 6). Due to slight sloping and drainage system no salinity was determined at irrigated sites.  

Table 3. The average organic matter content of irrigated soils  

Land use Organic matter (%) 
Cereal 1.42 
Vegetables 2.12 
Tobacco 1.47 
Cotton 1,55 
Corn 1.57 
Orchards (Apple, Sharon, Plum, apricot etc) 2,15 
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Figure 5. Cereal irrigation in Gölbaşı 

 
 

C. Recently Irrigated Soils 

Following GAP Project irrigation to some sites in Adıyaman region were introduced particularly in 
Çamgazi (W of Adıyaman town), Samsat and Kahta (close to Atatürk Dam) and more groundwater 
wells are used for irrigation. The irrigation for these sites started app. 20 years ago. The main 
crop irrigated is cotton, corn and vegetables. There is a slight increase at recently irrigated areas 
than rain fed areas. The major issue at the recently and longtime irrigated areas are 
accumulation of phosphorus which sometimes determined as 120kg/ha (Kahta, cotton field) and 
excess N use. Salinity is still not a problem due to topography of Adıyaman.  

Table 3. The average organic matter content of recently irrigated soils  

Land use Organic matter (%) 
Cereal 1.35 
Corn 1,64 
Vegetables 2.04 
Tobacco 1.55 
Orchards  1.76 
Cotton 1,64 
 

2. WATER 

For water quality determination water samples were collected from ground, surface (creeks, 
streams) sources and Ataturk Dam. A total of 42 samples (25 from Atatürk Dam) were collected and 
analyzed for their pH, EC, heavy metals, nitrate and phosphorous content) (Table 4).  
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The excess nitrate and phosphorous content was only determined on northern margin of the Ataturk 
Dam where Adıyaman City sewage water is discharged (Figure 3). However, the pollution effect of 
discharge zone do not extend more than 2km. The next sampling period will be in December 
following precipitation to determine dissolution effect of rain.  

Ground water quality is quite good and no significant pollution was determined from sampled wells 
from Adıyaman, Kahta, Besni, Gölbaşı and Tut. But the pressure or opening new wells particularly on 
mountainous area may increase fertilizer use at these sites which may pollute fresh water sources at 
relatively low areas.   

Table 4. Water properties at selected sites in Adıyaman Region 

Sample pH EC 
mmhos/cm 

Nitrate 
ppm 

Phosphorous 
ppm 

Cd 
ppm 

Pb 
ppm 

Hg 
ppm 

Ground 
water – 
Kahta, 
180m 

7.76 280 0 0 0 0 0 

Göksu 
Stream 8.12 384 1.12 0 0 0 0 

Atatürk 
Dam – 
Center 
part 

7.60 330 1,18 0.006 0 0 0 

Atatürk 
Dam – 
Euphrates 
entrance 

8.10 320 1 0.004 0 0 0 

Atatürk 
Dam – 
Sewage 
water 
discharge 
zone 

7.53 630 5.3 0.12 0 0 0 

 

II. Socio-economic studies 
For determination of value of water among three sites in Adıyaman (Rainfed, Irrigated 
and Recently Irrigated) interviews were initiated. A questionnaire is prepared now it is 
under evolution of experienced scientist. The interview will be accomplished within the 
1st week of December.  
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Spatial assessment of soil salinity in the Harran Plain
using multiple kriging techniques
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Abstract The Harran Plain is located in the southeast-
ern part of Turkey and has recently been developed for
irrigation agriculture. It already faces soil salinity
problems causing major yield losses. Management of
the problem is hindered by the lack of information on
the extent and geography of the salinization problem.
A survey was carried out to delineate the spatial dis-
tribution of salt-affected areas by randomly selecting
140 locations that were sampled at two depths (0 to 30
and 30 to 60 cm) and analyzed for soil salinity varia-
bles: soil electrical conductivity (EC), soluble cations
(Ca2+, Mg2+, Na+, and K+), soluble anions (SO4

2−,
Cl−), exchangeable Na+ (me 100 g−1) and exchange-
able sodium percentage. Terrain attributes (slope, to-
pographical wetness index) were extracted from the
digital elevation model of the study area. Variogram
analyses after log transformation and ordinary kriging
(OK) were applied tomap spatial patterns of soil salinity
variables. Multivariate geostatistical methods—regres-
sion kriging (RK) and kriging with external drift
(KED)—were used using elevation and soil elec-
trical conductivity data as covariates. Performances
of the three estimation methods (OK, RK, and
KED) were compared using independent validation
samples randomly selected from the main dataset.
Soils were categorized into salinity classes using

disjunctive kriging (DK) and ArcGIS, and classifi-
cation accuracy was tested using the kappa statis-
tic. Results showed that soil salinity variables all
have skewed distribution and are poorly correlated
with terrain indices but have strong correlations
among each other. Up to 65 % improvement was
obtained in the estimations of soil salinity varia-
bles using hybrid methods over OK with the best
estimations obtained with RK using EC0–30 as
covariate. DK–ArcGIS successfully classified soil
samples into different salinity groups with overall
accuracy of 75 % and kappa of 0.55 (p<0.001).

Keywords Harran Plain . Soil salinity . Regression
kriging . DEM . Disjunctive kriging . Kriging with
external drift

Introduction

Soil salinity is a concern with irrigated agriculture, and
20 % of total irrigated lands and 10 % of total arable
lands covering over 100 countries have been affected
by various types and levels of salinity (Ghassemi et al.
1995). This rate increases as more lands are opened to
irrigation and cultivation (Tanji 2002). The major con-
cern is with human-induced secondary salinization
which is due to inappropriate soil and water manage-
ment practices. It generally occurs in irrigated arid and
semiarid irrigated agricultural areas; one of which is
the Harran Plain in southeastern Turkey. Here, some

Environ Monit Assess (2013) 185:777–795
DOI 10.1007/s10661-012-2591-3
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Harran University,
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fields have been affected by salinity at various levels
since the area was developed for extensive irrigation
as a part of the GAP (Southeastern Anotolia Project)
development initiative launched by the Turkish gov-
ernment in the early 1990s. Saline soils are located at
low lying parts of the plain, primarily due to excessive
irrigation and lack of drainage, resulting in shallow
groundwater tables (Kendirli et al. 2005). The combi-
nation of high evaporation rates and clay soils results
in capillary upward movement of shallow ground wa-
ter and accumulation of salts in the rooting zone.

Soil salinity is an important chemical soil quality
indicator (Andrews et al. 2004; Zheng et al. 2009) that
also affects soil’s physical, chemical, and biological
processes (Karlen et al. 2008). Saline soils are generally
characterized by an electrical conductivity (EC) >4 dS
m−1, a pH <8, and an exchangeable sodium percentage
(ESP) of below 15, whereas in alkaline soils, EC is
lower than 4 dS m−1 and pH and ESP are higher than
8 and 15 %, respectively (USSLS 1969). Soil aggrega-
tion, hydraulic conductivity, water infiltration, and soil
erosion and fertility are adversely affected by high
degrees of soil salinity and alkalinity (Muhammad et
al. 2008), and consequent crop growth reductions and
yield losses occur (Cullu 2003). Soil alkalinity develops
when sodium becomes dominant in soil solution which
deteriorates soil structure and causes crust formation and
compaction of soil surface resulting in reduced infiltra-
tion, water logging, and runoff (Richard 1954).

The best management strategies of saline and
alkaline soils require accurate and updated infor-
mation about the spatial distribution of salinity
parameters across the area of interest (Pozdnyakova
and Zhang 1999). Careful monitoring is critical in com-
bating salinity and preventing more lands to become
saline (Metternicht and Zinck 2008). The lack of
knowledge on the true dimensions of the problem
hinders abatement efforts, as is the case in the Harran
Plain.

Spatial statistical methods can effectively charac-
terize salinity variability and reduce the number of
samples to be collected and analyzed. In addition to
inverse distance weighting and splines (Voltz and
Webster 1990; Phachomphon et al. 2010), kriging
methods have been widely used to map the spatial
distribution of soil properties, including soil salinity
(Pozdnyakova and Zhang 1999; Cetin and Kirda
2003). Kriging methods are based on the theory of
regionalized variables which assume that the variance

of measured values of properties is a function of the
distance between observations (Journel and Huijbregts
1981). This spatial structure can be assessed using
variogram analysis. The accuracy of the estimations
is affected by the variogram quality (degree of spatial
dependence), samples size, sampling density, and the
method of estimation (Webster and Oliver 2007).
Simple kriging methods may not be sufficient in
capturing all variation, and therefore multivariate
geostatistical methods can often provide better esti-
mates. Cokriging (COK), regression kriging (RK),
and kriging with external drift (KED) use one or
more secondary variables that are generally easily
obtainable compared to the primary variable. These
auxiliary variables can increase precision in estimates or
reduce the number of samples to be analyzed
(Bourennane et al. 2000). All three methods (COK,
RK, and KED) are superior under the existence of
spatial correlation between primary and secondary
variable(s). COK, in addition, requires the spatial
covariance function between primary variable and
covariables to be positive definite.

Commonly used auxiliary variables with these
methods are satellite imagery, soil type, soil spectral
reflectance, terrain indices (elevation, slope, profile
curvature, etc.), and hydrological parameters extracted
from digital elevation models (DEM; Bourennane et
al. 2000; Douaoui et al. 2006; Hengl et al. 2003a, b;
Wu et al. 2003; Bilgili et al. 2011). These covariates
have been extensively used in the estimation of vari-
ous soil variables such as soil carbon, soil depth,
macro- and micronutrients, heavy metals, and soil
emissions. Topographical parameters are most com-
monly preferred in such estimations (Florinsky et al.
2000; Kravchenko and Robertsen 2007; Takata et al.
2007) because of their importance to soil formation
processes, hydrology, and chemical transformations.
Development of salinity problems is generally affected
by topographical variables as well, with lower areas
more likely in developing salinity problems (Jordan et
al. 2004). Satellite imagery have also been used with
multivariate geostatistical methods in the estimation
of salinity (Eldeiry and Garcia 2008), as well as
topographical data (Florinsky et al. 2000) and a
combination of both (Masoud and Koike 2006).
Constraints with imagery data in salinity monitoring
are crop interactions, spatial and temporal variation
of soil salinity, and spectral confusion with other
objects (Metternicht and Zinck 2008).
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Another approach is based on estimates of the
spatial distribution probability of exceeding thresholds
for various variables using nonlinear geostatistical
methods such as indicator and disjunctive kriging
(DK). The latter is considered more advantageous
because no information is lost during transformation.
Continuous variables in this case are transformed to
binary variables and then kriged to display areas ex-
ceeding thresholds (Shi et al. 2007; Dash et al. 2010).
Demir et al. (2009) mapped groundwater depth using
indicator kriging to show areas under salinization risk.

The objectives of this study were to (1) map soil
salinity in the Harran Plain using OK in order to
quantify the dimensions and spatial distributions of
the problem; (2) evaluate the utility of topographical
variables and soil ECs as covariates in RK and KED
for the improved spatial estimation of soil salinity; (3)
compare OK, RK, and DK using independent valida-
tion samples; and (4) classify soils into different

salinity classes and test the accuracy of classification
using DK.

Materials and methods

Study site

The study area is located in the Harran Plain,
Sanliurfa, Southeastern Turkey (37° 9.7′ and 36° 42′
N lat, 38° 49.6′ and 39° 7.9′ E long; Fig. 1), located in
upper Mesopotamia between the Euphrates and Tigris
Rivers. The plain was developed for irrigated agricul-
ture (152,000 ha) as a part of a multibillion dollar
regional development project launched by the
Turkish government in the early 1990s. The climate
of the study area is semiarid with mean temperature,
evaporation, and precipitation of 17.2°C, 365.2 mm,
and 1,848 mm, respectively. Most precipitation is

Fig. 1 Study area, the Harran Plain, and sampling locations
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received during the fall season. Elevation of the study
area ranges from 345 m in the south to 550 m in the
north (Fig. 2). The soils have been formed on calcareous

materials and are classified as Vertisols, Fluvisols,
Calcisols, Cambisols, and Leptosols (FAO/IUSS
1998), and a total of 25 soil series have been described

Fig. 2 Topographical derivatives of the Harran Plain: DEM, slope (in percent), flow accumulation (Flow Acc.) and Topo Wetness Index
(TWI)

780 Environ Monit Assess (2013) 185:777–795



in the study area (Aydemir 2001). Soils are mostly finely
textured (clay loam to clay) and contain very low to low
amounts of organic matter (0.5 to 1.5 %) and high
amounts of CaCO3 (on average 250 to 350 gkg−1).
Dominant clay minerals within salinized area are smec-
tite, polygorskite, chlorite, illite, and kaolonite, in de-
creasing order of abundance (Seyrek et al. 2005).
Cotton, wheat, and corn are the predominant crop types
grown in the plain (Cullu 2003). The concavely shaped
plain is surrounded by mountains in the north, east, and
west directions and groundwater generally moves to-
wards the south, where the more saline soils are located.

Soil sampling

A total of 140 soil samples across the study area were
randomly sampled at two different depths (0 to 30 and 30
to 60 cm; Fig. 1) and subsequently air dried and sieved
(2 mm) for laboratory analysis. Soil sampling was carried
out in October 2009when the crop season ends, irrigation
is terminated, and salt accumulation is generally highest.
The geographical locations (UTM coordinates) of the
sampling locations were recorded using a GPS unit.

Laboratory analysis

Soil EC and other soil salinity indicators were deter-
mined in soil water extractions obtained from saturation
pastes that were prepared from 100 g air dried and 2-mm
sieved soil. EC (in deciSiemens per meter) and pH were
measured using a combination of EC and pH meter
(Mettler-Toledo International Inc., Switzerland), and sol-
uble cations—Ca2+, Mg2+, Na+, and K+—were analyzed
in the central lab of the Harran University using an ICP-
AEAS (Varian-Vista, Palo Alto, CA, USA). Soluble
anions—SO4

2−, Cl−—were determined using ion chro-
matography (Dionex ICS-2000, Dionex Corporation,
California, USA). Cation exchange capacity (CEC) and
exchangeable sodium (NaExc; meq 100 g−1) were
obtained according to the ammonium acetate method
(Hesse 1972). ESP was calculated as follows:

ESP ¼ 100� ðNaExc=CECÞ ð1Þ

Terrain attributes

Topographical maps (1:25,000 scale) of the study area
were digitized to create a digital elevation map

(DEM). From the DEM, topographical parameters
such as slope (in percent), flow accumulation, and
Topo Wetness Index (TPI) were delineated using spa-
tial analysis tools in ArcGIS 9.3 (ESRI Inc.; Fig. 2).
The information of topographical indicators was
extracted by overlapping the sampling locations on
the raster maps of each topographical parameter. The
TWI was calculated as (Sorensen et al. 2005):

TWI ¼ ln ða= tan bÞ ð2Þ

where a is the upslope contributing area obtained from
flow accumulation and β is the slope gradient (in
percent).

Geostatistical modeling

Ordinary kriging

Ordinary kriging (OK) is a commonly used linear
spatial interpolation method which provides estimates
of variables at unsampled locations by using informa-
tion from neighboring points and assigning weights to
these points based on their distance from the point
being estimated and the spatial variability structure.
The OK method can be formulized as:

Z�
OK x0ð Þ ¼

Xn
i¼1

wiZ xið Þ ð3Þ

where Z�
OK xoð Þ is the OK estimation at an unsampled

location (xo), n is the number of samples in a search
neighborhood, and wi are the weights assigned to the
ith observation Z(xi). Weights are assigned to each
sample such that the estimation or kriging variance,

E Z� x0ð Þ � Z x0ð Þf g2
h i

, is minimized and the estimates

are unbiased (Webster and Oliver 2007). Weights are
determined after computing a semivariogram that
models spatial correlation and covariance structure
between datapoints for each variable using Eq. 4 be-
low (Journel and Huijbregts 1981):

bgðhÞ ¼ 1

2NðhÞ
XN
i¼1

Z xi þ hð Þ � Z xið Þ½ �2 ð4Þ

where bgðhÞ is the semivariance between two observa-
tion points, Z(xi) and Z(xi+h), separated by a distance h,
and N is number of observation pairs at the distance h.
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Regression kriging

RK is a spatial interpolation method that makes use of
secondary variable(s) for the estimation of primary
variable at unsampled locations. RK combines regres-
sion between primary (target) variable and secondary
variable(s) with kriging of residuals derived from a
regression analysis (Hengl et al. 2007):

Z�
RK xoð Þ ¼

Xp
k¼0

bk :qk xoð Þþ
Xn
i¼1

wi:e xið Þ ð5Þ

where ZRK xoð Þ is the RK estimate at unsampled loca-
tions (xo), ßk and e(xi) are the regression coefficients
and residuals, respectively, obtained from the regres-
sion between primary and secondary variables using
observations at the sampled locations (xi), wi are krig-
ing weights determined from the variogram of resid-
uals, qk(xo) are the values of secondary variables at the
target locations, soil electrical conductivity in our
case, and p is the number of predictor (secondary)
variables. Regression coefficients and residuals were
obtained using ordinary least square (OLS) regression,
and kriging of residuals was performed with simple
kriging (Hengl et al. 2007). The secondary variables
involved in the OLS equation was soil EC at different
depths.

Kriging with external drift

KED is a spatial interpolation method that combines
primary and secondary variables with the aim of im-
proving the estimations and is similar to universal
kriging where coordinates are used to incorporate
trend (drift) in the kriging process. In KED, trend is
an auxiliary variable that is correlated with the primary
variable and is present both in calibration and valida-
tion sampling locations. KED is formulized as in Eq. 6
(Wackernagel 2003):

ZKED xoð Þ ¼ Pn
i¼1

wi:Z xið Þ; Z xið Þ ¼ mðxÞ þ eðxÞ

ð6Þ
where wi are the weights of KED, m(x) is the main
trend part where predictor variables are involved, and
e(x) are residuals. Predictor (secondary) variables are
available at all points (calibration and validation
points). In this study, the primary variables (Z; Z1)

were soil salinity variables. The covariables (Z2) were
the either soil ECs or elevation.

Validation–prediction accuracy

The prediction accuracy of the three kriging methods:
OK, RK. and KED was evaluated using separate val-
idation sample subsets. Samples were randomly divid-
ed into two subsets containing 70 and 30 % of the total
data (n0103 and n037, respectively). The former one
was used to create the kriging models and the latter
used to validate the models. Estimation techniques
were evaluated using the root mean square error of
prediction (RMSEP) between measured and predicted
values of samples in the validation dataset as an indi-
cator of estimation error. Lower RMSEPs indicate
better methods. RMSEP is formulated as:

RMSEP ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn
i¼1

Zpredicted � Zobserved
� �2

n� 1

vuuut ð7Þ

where Zpredicted and Zobserved are the variables of inter-
ested predicted using geostatistical methods and mea-
sured in the laboratory, respectively.

The relative performance of the estimation methods
was assessed using the Percent Relative Improvement
(RI) as adapted by Mueller et al. (2001) and Brouder et
al. (2005):

RI ¼ 100%� RMSEPOKð Þ � RMSEPRKð Þ= RMSEPOKð Þ
ð8Þ

where RI is the percentage improvement or reduction
in the estimation errors (positive RI improvement,
negative RI reduction). Log transformation was ap-
plied for soil variables with high skewness and lacking
normality (EC, ESP, NaExc., Ca

2+, Mg2+, Na+, and K+)
prior to geostatistical analyses. Variables were back
transformed before producing the final maps.

Classification

Classification of salt-affected soils was made accord-
ing to Richard (1954). Soils with EC <4 and ESP <15
were classified as nonsaline–nonalkaline, soils with
EC >4 and ESP <15 as saline–nonalkaline, soils with
EC >4 and ESP >15 as saline–alkaline, and soils with
EC <4 and ESP >15 as nonsaline–alkaline.
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DK was performed in order to group soils into dif-
ferent salinity classes. For classification, first disjunctive
kriging was separately performed on both soil ECs and
ESP, and probability maps were obtained. Probability of
0.5 was accepted as the threshold to reclassify the output
into two classes: saline or nonsaline. Similarly, the soil
ESP probability map was reclassified into groups: alka-
line or non-alkaline, and two maps were then spatially
joined in order to obtain the final map.

Disjunctive kriging DK as a nonlinear estimation
method is capable of making variable estimations as
well as quantifying the probability of exceeding cer-
tain threshold cutoff value at unsampled locations. In
DK, the original variable, Z(x) is first transformed to a
new variable (Y(x)), so that the variables have a mul-
tivariate normal distribution and are orthogonal to
each other. The transformation is achieved using
Hermite polynomials:

ϕ Y ðxÞ½ � ¼ ZðxÞ ð9Þ
the transformation function, ϕ Y ðxÞ½ �, consists of an
infinite number of Hermite polynomials:

ϕðY ðxÞ ¼
Xk
k¼0

CkHkðyÞ ð10Þ

where Hk(y) is a Hermite polynomial of order k,
and Ck are Hermetian coefficients that are obtained

using Hermetian integration (R). Subsequently, these
Hermite polynomials are estimated at unsampled loca-
tions using simple kriging:

H�
k Y xoð Þ½ � ¼

Xk

k¼0
wik:Hk Y ðxÞð Þ ð11Þ

and multiplied by coefficients Ck to obtain final DK
estimation at unsampled locations:

z�dk xoð Þ ¼
Xn

i¼0
Ck:H�

k Y xoð Þ½ � ð12Þ

The accuracy of classification was determined using
the kappa statistic (κ), which measures the degree of
agreement between twomethods and tests the hypothesis
that the agreement between two methods is only by
chance. Kappa statistic analysis was performed in
SPSS software (SPSS Inc. 1999). All geostatistical anal-
yses were performed using R programming language
software (R Development Core Team 2006) and
ArcGIS Geostatistical and Spatial Analyst Extension
tools (ESRI 2001).

Results and discussions

Soil salinity parameters

Summary statistics of the soil salinity parameters at
two depths are presented in Table 1. These show a
broad range of values across the study site, notably

Table 1 Basic statistics for soil salinity parameters at two sampling depths (n0140)

Depth pH EC CaCO3 ExcNa CEC ESP Soluble cations and anions (mg kg−1)

(cm) (dS m−1) (me 100 g−1) (me 100 g−1) (%) Na+ K+ Ca2+ Mg2+ SO4
2− CI−

Min 0–30 7.1 0.2 0.0 0.1 9.0 0.3 0.7 0.1 0.4 0.1 0.0 0.0

Max 0–30 8.0 39.7 54.0 13.7 67.8 57.8 173.0 54.5 160.0 44.5 171.2 80.9

Mean 0–30 7.5 3.3 30.0 3.2 3.8 9.0 10.1 1.6 10.1 2.9 9.4 6.3

Std dev 0–30 0.2 6.7 7.2 3.3 11.2 10.9 27.5 6.2 19.7 6.6 18.1 10.5

Skew 0–30 0.2 3.4 0.0 1.4 0.2 2.3 4.3 6.9 4.7 4.5 6.4 3.9

CV 0–30 0.02 2.0 0.2 1.1 2.9 1.2 2.7 4.0 2.0 2.3 1.9 1.7

Min 30–60 7.1 0.2 0.0 0.1 15.3 0.2 0.5 0.0 0.5 0.1 0.0 0.0

Max 30–60 8.1 24.6 49.0 95.3 79.9 261.0 88.0 21.5 226.0 26.6 65.6 41.3

Mean 30–60 7.6 2.0 31.0 3.5 4.0 9.4 5.8 0.5 7.4 1.8 8.7 5.0

Std dev 30–60 0.2 3.5 7.6 8.4 10.8 23.6 12.8 1.9 21.0 3.8 12.1 7.5

Skew 30–60 0.2 3.7 −0.4 9.7 0.5 9.1 4.3 10.2 8.7 4.3 2.9 3.1

CV 30–60 0.03 1.8 0.2 2.4 2.7 2.5 2.2 3.7 2.8 2.2 1.4 1.5
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soil EC ,which varied from 0.2 to 39.7 dS m−1 and 0.2
to 24.6 dS m−1 for surface and subsurface soils, re-
spectively. Soil ESP showed values above 15 % at
some locations, indicating the existence of sodic soils
(Richards 1954). Soil pH varied from 7.1 to 8.

Surface soils are relatively more saline than subsur-
face soils at the same location, having higher average
values for all salinity parameters. All variables show
positively skewed distributions due to some high val-
ues within the dataset or outliers. Among measured
variables, soluble K+, showed the highest variation as
indicated by higher CV values, followed by CEC at
the surface and soluble Ca2+ in the subsoil. CV values
exceeding 0.35 can be considered highly variable
(Wilding 1985), which was the case for all variables
except CaCO3 and pH.

Table 2 shows Pearson correlation coefficients
among the soil salinity variables. Significant (p<0.05)
positive and negative correlations were obtained be-
tween many of them for both depths. Variables mea-
sured for the surface soil were significantly correlated
with corresponding ones in the subsoil. Both EC0–30 and
EC30–60 had significant positive correlations (r>0.16)
with all the variables except exchangeable Na30–60 (r0
0.11). Soil cations were also significantly correlated
with each other except K+. Other significant correlations
were generally obtained between ESP and other salinity
parameters with a few exceptions.

Table 3 shows correlations between soil salinity and
terrain parameters. Only elevation showed significant
correlations with soil salinity parameters, although the
degree of correlation was relatively low. The correla-
tion of soil salinity variables with other terrain indices
were not significant. The areas with high TWI values
at low elevations are more likely to become saturated
and experience capillary movement of groundwater to
the surface, but correlations with EC were neverthe-
less weak.

Spatial variability of soil salinity variables

All soil salinity variables were skewed and a normal
distribution was obtained after log transformation pri-
or to variography. Data were fit using spherical, expo-
nential, and Gaussian models (Table 4; Fig. 3),
although exponential models were most common.
Fitting semivariograms to the data showed that soil
salinity parameters were spatially dependent over dis-
tances ranging from 1,140 to 92,040 m (Fig. 4).

The quality of a fitted model to the spatial autocor-
relation structure of a dataset affects the quality of
variograms and therefore the success and accuracy of
the kriging effort (Leenaers et al. 1990). The output of
variogram parameters can vary depending on the
user’s interpretation and the selected lag distance or
model. These parameters are selected optimally based
on criteria such as mean square error (MSE) obtained
from cross validation or R2 of the model. The models
that provided the lowest mean square error were se-
lected as the best fit in this study.

Nugget to Sill ratio (Co/(Co+C) has been used
to evaluate the extent of spatial structure of vari-
ables (Cambardella et al. 1994). If the ratio is less
than <0.25 then the variable is strongly spatially
autocorrelated, if between 0.25 and 0.75 it is mod-
erately autocorrelated, and if higher than 0.75,
spatial distribution is weak. Accordingly, EC, K+, and
Ca2+ showed strong spatial structure within a small
range indicated by a low (Co/(Co+C) value, whereas
spatial strength of NaExc, ESP, Na

+, and SO4
2− showed

moderate ratios (Table 4). Cl− in surface soils was char-
acterized by a nugget effect model, which indicates a
lack of spatial structure or a random spatial distribution.
However, Cl− in subsurface soils showed strong spatial
dependence at short range.

Shi et al. (2007) attributed strong spatial depen-
dence to natural factors such as parent material, topog-
raphy, or soil type while they considered a poor spatial
dependence structure to be more related to anthropo-
genic effects, e.g., soil management practices such as
fertilization. In our case, low spatial autocorrelation
can be due to similar factors like irrigation manage-
ment and drainage patterns. Topography also is a very
important factor impacting the spatial distribution of
salinity indicators. Soil EC from both soil depths
showed very high nugget values and short ranges of
influence (a) which is an indicator of short range
variability (Table 4; Douaoui et al. 2006).

Spatial estimations

Ordinary kriging

Mapping salinity is a preliminary step towards deci-
sion making such as the delineation of contaminated
areas and identification of zones that need remediation
or adapted management. Soil salinity across the study
area was mapped using ordinary kriging. The spatial
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Table 3 Correlations of soil salinity variables with terrain parameters

EC pH NaExc. ESP Ca2+ Mg2+ K+ Na+ SO4
2− CI−

0–30 cm

Elevation −0.24* 0.06 0.09 −0.10 −0.17* −0.25* 0.07 −0.24* −0.22* −0.24*
Slope −0.01 −0.03 0.12 0.06 −0.01 0.07 −0.01 0.07 0.06 −0.02
Flow Acc −0.03 0.02 −0.07 −0.06 −0.06 −0.05 −0.03 −0.04 −0.05 −0.05
Flow Dir −0.04 0.09 −0.12 −0.09 −0.03 −0.01 −0.04 −0.02 −0.03 −0.03
TWI 0.10 −0.06 0.15 0.12 0.10 0.13 0.05 0.08 0.12 0.02

30–60 cm

Elevation −0.23* 0.07 0.02 −0.03 −0.05 −0.25* 0.01 −0.30* −0.28* −0.28*
Slope −0.09 −0.04 −0.03 −0.04 −0.07 −0.04 −0.07 −0.01 0.01 −0.08
Flow Acc −0.05 0.02 −0.05 −0.05 −0.03 −0.05 −0.03 −0.05 −0.04 −0.07
Flow Dir −0.07 0.09 −0.06 −0.05 −0.04 −0.05 −0.05 −0.03 −0.04 0.07

TWI 0.04 −0.05 0.03 0.02 0.03 0.06 0.06 0.08 0.02 0.09

ESP exchangeable sodium percentage, EC soil electrical conductivity, TWI topo wetness index, Flow Acc flow accumulation, Flow Dir
flow direction

*p00.05, significant

Table 4 Semivariogram model parameters of soil salinity variables

Variables Model Co Co+C Lag size (m) a R2 RSS Co/(Co+C)b

0–30 cm

ECa Exp 0.17 1.41 3,850 3,210 0.40 0.19 0.12

NaExc
a Gaus 0.79 1.91 3,850 7,153 0.85 0.25 0.41

ESPa Gaus 0.85 1.91 3,850 8,054 0.85 0.25 0.45

Na+a Exp 1.00 2.01 3,850 92,040 0.61 0.23 0.50

K+a Exp 0.20 1.30 1,600 3,030 0.19 0.27 0.16

Ca2+a Exp 0.20 1.33 1,250 3,750 0.65 0.09 0.15

Mg2+a Sph 0.87 1.73 3,850 10,160 0.70 0.25 0.50

SO2−4 Sph 0.28 0.64 2,100 5,700 0.65 0.04 0.44

Cl− Nug – – – – – – –

30–60 cm

ECa Exp 0.11 0.99 3,850 1,140 0.10 0.12 0.11

NaExc
a Gaus 0.92 1.87 3,850 8,764 0.85 0.21 0.49

ESPa Sph 0.81 1.76 3,850 12,270 0.85 0.18 0.46

Na+a Exp 0.55 1.25 3,850 32,160 0.84 0.09 0.44

K+a Exp 0.57 1.14 2,050 10,500 0.55 0.11 0.50

Ca2+a Exp 0.20 1.15 2,700 4,470 0.56 0.13 0.17

Mg2+a Exp 0.79 1.58 3,850 21,510 0.84 0.09 0.50

SO2−4 Exp 0.64 1.28 2,100 13,620 0.42 0.32 0.50

Cl− Exp 0.17 1.27 2,050 2,670 0.40 0.09 0.13

Co nugget effect, Co+C sill, a range (meter), Sph spherical, Exp exponential, Gaus Gaussian, Nug nugget, RSS residual sum of squares
a Log transformation was applied; ratio <0.25 (good spatial correlation); 0.25–0.75 ( moderate spatial correlation); and >0.75 (poor
spatial correlation)
b Nugget to Sill ratio
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Fig. 3 Theoretical and fit-
ted semivariograms of soil
salinity variables at surface
depth (0–30 cm)
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Fig. 4 Theoretical and fit-
ted semivariograms of soil
salinity variables at subsur-
face depth (30–60 cm)
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distributions of soil ECs and ESP are shown in Figs. 5
and 6, respectively. In general, salinity was higher in
southern regions of the study area, similar to the shape
of the DEM (Fig. 2). In general, salinity is higher in
low lying areas with elevation less than 400 m, than in
the north elevation with elevations higher than 450 m.
At these areas, excessive irrigation combined with a
convex topography and groundwater flow from the
mountains cause water depth to approach the land
surface. This problem gradually expands towards the

north direction according to estimations by Steenhuis
et al. (2006). However, northern areas have also been
locally affected by salinity. In the study area, the
quality of irrigation water is generally high and not
considered the primary cause of salinization, but the
associated water table rise brings naturally calcareous
saline groundwater near the surface.

Soil cations followed a similar pattern to soil EC,
although there were variable-dependent differences.
ESP as an indicator of alkalinity showed a slightly

OK map of soil surface EC RK map of surface EC KED map of surface EC

Fig. 5 Mapping soil surface ECe using OK, RK, and KED

OK map of soil surface ESP RK map of surface ESP KED map of surface ESP

Fig. 6 Mapping surface ESP using OK, RK, and KED
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different distribution from EC, showing some high
values at the upper parts of the plain. Apparently, high
amounts of gypsum existing in the soil prevented soils
from become more alkaline (Aydemir and Sonmez
2008).

Natural factors such as parent material, soil type,
geology, climate, and topography, combined with an-
thropogenic factors such as inappropriate irrigation
practices, water logging and land cover, and crop
rotations (Bui et al. 1996; Wiebe et al. 2007) are the
controlling factors for the distribution of soil salinity
within the landscape. In the study area, the formation
of saline soils is apparently mostly due to inappropri-
ate irrigation management performed in the smectitic
clay soils under high evaporation and topographical
factors. Other salinity indicators showed similar pat-
terns to soil EC with high values in the eastern and
southern sections and low values in the western and
northern parts of the study area.

Multivariate geostatistical methods: RK and KED

Hybrid methods that use covariables that are related to
the primary variable can help to improve the accuracy
of the estimations. Terrain variables are important
factors affecting the distribution of soil salinity as well
as many other parameters in the soil. The correlations
between terrain and soil salinity variables were never-
theless poor (Table 3). Elevation was the only variable
that had statistically significant correlations with other
salinity parameters. There were also strong correla-
tions between soil EC and other soil salinity parame-
ters at both surface and subsurface levels. Therefore,
both elevation and soil electrical conductivity were
used with regression kriging and kriging with external
drift methods as covariate in order to improve the
estimations of other soil salinity parameters.

The performance of these methods and relative
improvements as compared to ordinary kriging were
tested using an independent validation sample set con-
taining 30 % of samples. Estimation errors, RMSEP
values, and the RI values associated with RK, KED,
and OK are shown in Table 5. Overall, both RK and
KED methods using elevation and soil ECs (EC0–30

and EC30–60) at two different depths as covariable
improved the estimations of soil salinity variables at
surface and subsurface levels as indicated by positive
RI values and lower RMSEP values than ones
obtained from the OK method. Incorporation of

auxiliary variables improved the estimations up to 65
% with the best performance obtained from RK with
soil EC0–30 as covariate for the estimation of soluble
magnesium (Table 5). The improvement was also
obtained for other cations at both depths, except for a
few subsurface variables, which produced negative RI
values (Table 5). For soil EC, improvement was al-
ways obtained using either method and covariate. The
improvement for NaExc was minor. The ESP, indicator
of soil alkalinity, was able to be improved up to 16 %,
but almost no improvement was obtained for ESP at
the subsurface depth using either RK or KED.

For anions, the estimation of SO4
2− was improved

with auxiliary variables, but no improvement was
obtained for Cl−, i.e., OK provided lower RMSEP
values. This was explained by the low correlation
between Cl− and potential covariables (Table 2;
Hengl et al. 2007). The estimations of the variables
having higher correlations with soil ECs and eleva-
tions were improved, especially for the shallow depths
(Table 5).

Superiority of hybrid techniques over simple krig-
ing interpolation methods has been previously demon-
strated (Zhu and Lin 2010; Hengl et al. 2007). This is
mostly due to their ability to include secondary infor-
mation into the model. On the other hand, some
(Kravchenko and Robertsen 2007) reported the oppo-
site outcome and emphasized that simple or ordinary
kriging may be sufficient in cases where the correla-
tions between secondary and primary variables are
poor. The success of these methods in general depends
upon the degree of correlation between primary and
secondary variables and secondly on the structure of
variogram of residuals (Hengl et al. 2007).

Auxiliary variables

The level of the improvement in the estimations varied
depending upon the interpolation method, the covari-
able, or both ,i.e., KED generally provided more im-
provement for the estimation of soil salinity
parameters at the surface when using EC0–30 as cova-
riable, while RK was better in most of the cases with
EC30–60 as covariable. Using elevation with RK pro-
vided better results than using elevation with KED.

Selection among methods used depends on the sam-
pling design of the covariable and the degree of rela-
tionship between covariable and primary variable. If the
covariable was measured at the same locations as the
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Fig. 7 Soil salinity class map using disjunctive kriging
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primary variable and were well correlated to it, then RK
and KED are advantageous (Hengl et al. 2003b).

The benefits of covariables alone were not clear, but
generally the cases where electrical conductivity was
used as a covariate produced more successful estimates.
Conversely, elevation had lower correlations than soil
ECs, but its use as a covariable provided comparable
results with the use of soil ECs as a covariate. Having
better correlations with other parameters makes soil
electrical conductivity preferable over elevation data,
but DEM data are more readily available and could be
used for the estimations of various parameters simulta-
neously. Terrain parameters can therefore provide good
auxiliary data if they capture the general trend of the
distribution of the variable of interest (McBratney et al.
2003). Zhu and Lin (2010) used indices extracted from
DEM and reported that RK can only be preferred over
OK if there is strong and statistically significant rela-
tionship (R>0.60) between target and secondary varia-
bles. Bourennane et al. (2000) used slope gradient
extracted from DEM data and improved the estimation
of soil thickness by 38%. Kozar et al. (2002) used slope
gradient in COK and successfully improved the estima-
tions of P and K.

Classification

Distinguishing soil samples into different salinity clas-
ses was evaluated using GIS-based disjunctive kriging
(DK–GIS) (Fig. 7). Wu et al. (2003) stated that com-
parisons among estimation maps produced by differ-
ent kriging methods cannot prove which one is the
best map. Penizek and Boruvka (2006) used a t test in
deciding which maps produced by RK and COK were
the best in the estimation of soil depth using actual

observation and estimations. In this study, the kappa
statistic (κ) was used to evaluate the classification
accuracy. κ values equaling to 1 indicate perfect agree-
ment, and if κ is different than 0, the agreement among
two methods is more than chance, which is also indi-
cated by significant p values (p<0.001).

Table 6 shows the number of samples that were clas-
sified correctly and the percent accuracy. The DK–GIS
successfully separated soils as nonsaline–nonalkaline,
nonsaline–alkaline, saline–nonalkaline, and saline–alka-
line with overall average accuracy of 75 % (κ00.55, p<
0.001; Table 6). The DK–GIS method, which measures
the probability that a variable exceeding a certain thresh-
old, successfully classified soils into different salinity
classes. DK has been previously found to be a very useful
tool in the assessment of areas under risk of various
contaminants such as salinity, NO3 in groundwater, and
heavy metals (Triantafilis et al. 2006; Shi et al. 2007). In
general, such variables showed high skewness, and DK
was a very useful tool in dealing with non-normal data
(Yates and Yates 1988), It has also been found superior to
indicator kriging, another nonlinear interpolationmethod,
because it does not lose information when making binary
transformations (Lark and Ferguson 2004; Triantafilis et
al. 2006). Triantafilis et al. (2006) found that DK provid-
ed the lowest misclassification numbers compared to
indicator kriging when determining salinity risk areas
using low-quality irrigation water.

Conclusions

The spatial distribution of soil salinity and soil salinity
variables were assessed using laboratory data with
simple OK, hybrid methods like RK and KED, and a

Table 6 Soil salinity classification by two methods (laboratory, DK–GIS) and kappa statistics

Laboratory DK–GIS

Nonsaline–nonalkaline Nonsaline–alkaline Saline–nonalkaline Saline–alkaline Total

Nonsaline–nonalkaline 74 5 16 4 99

Alkaline–nonsaline 1 10 0 2 13

Saline–nonalkaline 0 1 7 4 12

Saline–alkaline 0 0 1 11 12

Total 75 16 24 21 136

Po (%) 75

Kappa 0.55 (p<0.00)
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nonlinear geostatistical method, DK. All soil salinity
variables showed skewed distribution with high CV
values and were related to DEM-derived topographi-
cal variables. Saline areas were mostly located in the
southern and eastern parts of the plain, which were
generally low-elevation areas. However, topographical
variables explained the variation of soil salinity only
weakly. This is due mostly to irrigation and drainage
practices and patterns.

Soil salinity estimations could be improved by in-
corporating auxiliary information from either EC
measurements or elevation parameters. Up to 65 %
of improvement was obtained using RK and KED
methods, and gains were higher using EC as covariate
than elevation parameters. The classification results
showed that DK could classify soils into different
salinity groups successfully with 75 % overall accura-
cy and a kappa statistics of 0.55 (p<0.001). In sum-
mary, using geostatistical methods can greatly enhance
estimations of soil salinity and alkalinity and assists
with abatement and monitoring.
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