
Theoretical Population Biology 71 (2007) 174–181

How to compute the effective size of spatiotemporally structured
populations using separation of time scales

Yutaka Kobayashi!, Norio Yamamura

Center for Ecological Research, Kyoto University, Otsu, Shiga 520-2113, Japan

Received 27 February 2006
Available online 9 December 2006

Abstract

Calculations to derive effective population size become highly complicated when complex population structure is considered. We
provide an easy method of computing the effective size of a subdivided population with overlapping generations (a spatiotemporally
structured population) using an approximation based on separation of time scales. We also numerically compute the effective size to
verify the accuracy of the derived formula. Various interesting quantities, including moments of coalescent time, are readily derived using
this approach.
r 2006 Elsevier Inc. All rights reserved.
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1. Introduction

One of the key concepts in population genetics is the
notion of effective population size (Ne). Among the several
definitions of Ne, ‘‘inbreeding effective size’’ in particular is
defined as the size of the Wright-Fisher idealized population
that experiences the same rate of change in the degree of
inbreeding (Crow and Kimura, 1970). In contrast to this
classic ‘‘forward’’ view of inbreeding effective size (hereafter,
we omit ‘‘inbreeding’’ for simplicity), the recent develop-
ment of coalescent theory (Kingman, 1982a–c; Hudson,
1983; Tajima, 1983; for reviews, see Donnelly and Tavare,
1995; Nordborg, 2001; Wakeley, 2004) has provided a
‘‘backward’’ interpretation, which may be viewed as the
reciprocal of the rate of coalescence of two sample lineages
per generation (e.g., Rousset, 2004; Hein et al., 2005).
Regardless of the viewpoint, the concept of effective size
enables us to apply studies of an idealized population to
the investigation of non-ideal populations with various
complex structures. Since the pioneering work of Wright
(1931), population geneticists have derived many formulae

to calculate effective size under a variety of assumptions,
such as separate sexes, non-random contribution of gametes
from parents to offspring, or temporally fluctuating popula-
tion size (for a review, see Caballero, 1994).
In particular, the effective sizes of subdivided popula-

tions have interested population geneticists (Chesser et al.,
1993; Sugg and Chesser, 1994; Wang, 1997a, b; Whitlock
and Barton, 1997; Nunney, 1999; Wang, 1999; Wang and
Caballero, 1999). Researchers have also explored the effect
of within-subpopulation structure, such as overlapping
generations (Felsenstein, 1971; Hill, 1972, 1979; Johnson,
1977; Choy and Weir, 1978; Pollak, 1980, 1990, 2000).
Both of these factors significantly affect effective popula-
tion size. Because many populations in the natural world
have simultaneous spatial and age structures, an under-
standing of their joint effects is important. Rousset (1999)
first calculated genetic differentiation and effective size in
spatially structured populations (both island-like and
stepping-stone populations) with general within-subpopu-
lation class structure. However, the simultaneous consid-
eration of both within-subpopulation and spatial structures
entails large and highly complicated calculations.
Here, we present an easy method of calculating the

effective size of a spatiotemporally structured population
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using an approximation based on ‘‘separation of time
scales’’ (Nordborg, 1997, 2001; Wakeley and Aliacar, 2001;
Nordborg and Krone, 2002). Separation of time scales
assumes that the rates of some processes (‘‘fast’’ processes)
are much quicker than those of others (‘‘slow’’ processes);
this method has been successful in reducing a structured
coalescent process to (1) an unstructured process (e.g.,
Nordborg, 1997; see also Nagylaki, 1980), (2) a process
very similar to unstructured coalescent (Nordborg and
Donnelly, 1997; Möhle, 1998; Wakeley and Aliacar, 2001),
or (3) a structured coalescent process with reduced
complexity (Nordborg, 1997; Nordborg and Krone,
2002). Our model corresponds to the third case.

2. Theory

We consider a structured coalescent process in a diploid
hermaphrodite population subdivided into s subpopula-
tions with overlapping generations. Except for spatial
subdivision and migration, this population is essentially the
same as that considered in some previous studies (e.g.,
Felsenstein, 1971; Hill, 1972; Johnson, 1977). The life cycle
of the organism is as follows: At any given year, individuals
born i years ago are referred to as ‘‘age-i individuals,’’
where the lowest age is one. Every subpopulation has Ni

individuals of age i. We assume that the demographic
structure is in equilibrium, so that Ni does not change over
time. Because the size of a cohort does not increase with
age, NiXNj when ioj. Thus, Ni/Nj gives the survival rate
from age j to age i. Every year, reproduction and aging
occur, followed by migration.

In the reproductive process, mating occurs within each
subpopulation. We assume that a gene of a newborn comes
from an age-i individual with probability pi. This means
that an age-i individual is invited to a single mating event
with probability pi/Ni. Therefore, an age-i individual mates
with itself with probability pi/Ni. Note that

Pn
i¼1pi ¼ 1,

where n is the maximum reproductive age. This setting
gives the following transition probability matrix for age
transition:

p1 p2 p3 " " " pi " " " pn
1

1

1

1

. .
.

1 0

0

BBBBBBBBBBB@

1

CCCCCCCCCCCA

, (1)

where the (i,j)th element gives the probability that a gene in
age i came from age j in the previous year. Note that the
subdiagonal elements are all unity and elements in white
space are all zero. This is because a gene of an age-i
individual comes from an age-(i#1) individual, i.e.,
the same individual, with probability one, unless the
individual is a newborn (i ¼ 1). There may be non-

reproductive age classes for which pi ¼ 0. We just suppose
that the above matrix is irreducible and aperiodic, which is
usually the case, and ensures ergodicity (Nagylaki, 1980).
After reproduction, the ages of all individuals increase by
one.
Migration then occurs. Nimi individuals of age i in each

subpopulation are randomly dispersed to the other s#1
subpopulations; thus, mi is the migration rate of age-i
individuals. We assume that at least some mi’s are non-
zero, so that subpopulations are not entirely isolated.
Moreover, we assume ‘‘conservative migration,’’ which
means the number of immigrants is exactly the same as that
of emigrants for each age (Nagylaki, 1980). After the
migration phase, the next year begins.
To calculate the effective size, we consider the backward

fate of a sample of two genes drawn from the population.
For this purpose, we consider the probability that the
lineages of the sample genes do not coalesce at least within
a given number of years, which we refer to as the ‘‘non-
coalescence probability.’’ From the definition, the non-
coalescence probability is equivalent to the distribution
function of the coalescent time. We decompose the non-
coalescence probability into two components. First, H(t) is
the probability that the two lineages are still separated and
in the same subpopulation in year t (we count years
backward, so that, for example, t ¼ 0 and N mean the
current year and the infinitely distant past, respectively).
Second, A(t) is the probability that the two lineages are still
separated and in different subpopulations. Thus, the total
non-coalescence probability is given by H(t)+A(t). We
further decompose the above two probabilities, although
we use this sub-decomposition only for numerical calcula-
tion. We define Ii(t) as the probability that the lineages are
separated in the same individual of age i. We define Hij(t)
as the probability that the lineages are separated in two
individuals of ages i and j in the same subpopulation. We
define Aij(t) in a similar manner. From the definitions,
H(t) ¼

P
iIi(t)+

P
ijHij(t) and A(t) ¼

P
ijAij(t). Note that

we did not specify the initial sample configuration, but
instead, focused on the ancestral configuration. In this
point, our method differs from some prior works, which
focused on the initial sample configuration (Slatkin, 1991;
Wilkinson-Herbots, 1998). In our setting, the initial sample
configuration is specified by the initial condition of the
non-coalescence probabilities; that is, for example,
Hij(0) ¼ 1 means that the two genes were sampled from
two individuals of age i and age j in the same subpopula-
tion.
Because we do not assume mutation, the non-coales-

cence probability H(t)+A(t) decreases with t because of
year-to-year coalescence. Once the decreasing rate
[H(t+1)+A(t+1)]/[H(t)+A(t)] asymptotically converges
on a value, denoted by l, Ne is calculated from the
following relationship (Felsenstein, 1971):

Ne ¼
1

2Tð1# lÞ
, (2)
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where T is the ‘‘generation time.’’ Roughly speaking, T
represents the length of one generation cycle (for a precise
definition of T, see Felsenstein, 1971; Johnson, 1977; see
also Eq. (7)). From the ‘‘forward’’ viewpoint, l is equal to
the largest non-unit eigenvalue of the transition matrix that
gives the change in probabilities of identity by descent
between genes of various ages (e.g., Johnson, 1977;
Rousset, 2004).We may refer to the effective size given by
the above equation as the ‘‘asymptotic’’ effective size to
distinguish it from the ‘‘instantaneous’’ effective size, which
we define as

Ne;t ¼
1

2Tð1# ðHðtþ 1Þ þ Aðtþ 1ÞÞ=ðHðtÞ þ AðtÞÞÞ
. (3)

Obviously, when t approaches infinity, Ne,t must con-
verge on Ne. Ne,t is as important as Ne because it can
measure the rate of recent coalescence. When there is no
confusion, we use ‘‘effective size’’ to mean the asymptotic
effective size. Hereafter, we mainly consider a continuous-
time approximation, assuming t is a continuous variable.
In this case, we may replace H(t+1)–H(t) by dH(t)/dt (and
treat A(t) similarly), so that the instantaneous effective size
is given as

Ne;t ¼
HðtÞ þ AðtÞ

#2TððdHðtÞ=dtÞ þ ðdAðtÞ=dtÞÞ
(4)

and the asymptotic effective size is given as the limit of
the above expression where t approaches infinity. From
Eq. (4), we have (d/dt)[H(t)+A(t)] ¼ –(1/2Ne,tT)[H(t)+
A(t)], meaning that the per-year rate of coalescence in year
t is given by 1/2Ne,tT, which converges on 1/2NeT under
t-N.

Now, we show how to calculate the instantaneous and
asymptotic effective size using an approximation based on
separation of time scales (Nordborg, 1997, 2001; Wakeley
and Aliacar, 2001; Nordborg and Krone, 2002). We
assume that all migration rates are very low (mi51) and
all age classes are very large in size (Nib1). In the original
Wright’s island model, if migration occurs on a faster time
scale than within-island coalescence, the entire process fully
collapses to Kingman’s coalescent with appropriate rescal-
ing of the time unit (Wakeley, 2004; Sjödin et al., 2005);
this means that sample lineages are exchangeable and that
the ‘‘coalescent effective size’’ exists (Nordborg and Krone,
2002; Sjödin et al., 2005). On the other hand, if migration
occurs on a slower time scale than within-island coales-
cence, the process again reduces to Kingman’s process,
except for the initial short phase, whose span is negligible
for the entire process (Wakeley, 2004). We are interested in
a situation lying between these two, where the process does
not collapse to Kingman’s coalescent (Notohara, 1990;
Nordborg, 1997; Wilkinson-Herbots, 1998; Nordborg and
Krone, 2002). We assume that the following limits exist for
all ipn:

0o lim
Ns!1

Ni

Ns
¼ aio1 (5a)

and for all non-zero mi:

0o lim
Ns!1

miNs ¼ mioþ1, (5b)

where Ns ¼
Pn

n¼1Ni, i.e., the total size of a subpopulation.
The existence of these limits ensures that migration and
coalescence occur on the same time scales (Nordborg, 1997;
see also Sjödin et al., 2005). On the other hand, we assume
that age transitions occur on a separate, faster time scale
than migration and coalescence, which is ensured by

lim
Ns!1

ð1# PiiÞNs ¼ þ1, (5c)

where Pij is the (i,j)th element of matrix (1). Because all
diagonal elements of the matrix are 0 except for P11 ¼ p1,
Eq. (5c) is equivalent to limNs!1ð1# p1ÞNs ¼ þ1. Eq. (5c)
means that we assume a ‘‘strong-migration limit’’ for age
transitions (Nagylaki, 1980); that is, we consider the limit in
which any slow events, i.e., migration and coalescence, do
not occur before age transition reaches equilibrium. In terms
of Nordborg and Krone (2002), each age group within each
subpopulation is a ‘‘deme’’ and each subpopulation is a
‘‘cluster’’ of demes; migration of lineages occurs quickly
within each cluster, but slowly between clusters.
We are interested in the rate of coalescence, which occurs

on the slower time scale. Therefore, we can assume that the
event on the faster time scale, i.e., age transition, is always
in equilibrium on the slower time scale, which is the essence
of separation-of-time-scales approximation. The equili-
brium probability that a lineage is in an age is known as
the ‘‘class reproductive value’’ of the age (e.g., Taylor,
1990). We denote the class reproductive value of age i as ci.
Mathematically, ci is given by the ith component of the
dominant left eigenvector of transition probability matrix
(1), where the vector is normalized to satisfy

P
ici ¼ 1 (e.g.,

Taylor, 1990; Rousset, 2004). Obviously, for matrix (1), ci
is given as

ci ¼
Xn

k¼i

pk
T

, (6)

where T is the ‘‘generation time,’’ and is given as

T ¼
Xn

i¼1

Xn

k¼i

pk ¼
Xn

i¼1

ipi (7)

as shown by Felsenstein (1971) and Johnson (1977). The
intuitive meaning of the generation time is the expected age
of a parent of a newborn, as is clear from the rightmost
expression in Eq. (7). Below, we consider the slow-time-
scale events, assuming that each lineage is in age i with
probability ci.
Let us consider how to calculate H(t+dt) and A(t+dt)

from H(t) and A(t), where dt is a infinitesimal positive. We
first show the results:

Hðtþ dtÞ ¼ f1# 2me dt# ð1=2NesTÞ dtgHðtÞ
þ ð2me=ðs# 1ÞÞ dtAðtÞ, ð8aÞ

Aðtþ dtÞ ¼ 2me dtHðtÞ þ f1# 2me dt=ðs# 1ÞgAðtÞ, (8b)
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where

me ¼
X

i

cimi (8c)

and

Nes ¼
T

ð1=N1Þ þ T2Pn
i¼2c

2
i ðð1=NiÞ # ð1=Ni#1ÞÞ

. (8d)

We only explain Eq. (8a), since Eq. (8b) is derived
analogously. The first term on the right-hand side of
Eq. (8a) is the probability that the sample lineages are
separated in the same subpopulation in year t and continue
to be so until year t+dt. On the other hand, the second term
is the probability that the sample lineages are separated in
different subpopulations in year t and enter a single
subpopulation by year t+dt. The first term is derived as
follows. Suppose that the two lineages are in the same
population in year t, which occurs with probability H(t). In
this case, two kinds of events can occur: migration or
coalescence. Let us first consider migration. Because a
lineage is in age i with probability ci, the per-year
probability that a lineage migrates is given by (8c).
The quantity me, given by Eq. (8c), is known as the
‘‘effective migration rate’’ (Rousset, 1999, 2004). We
can ignore the possibility that both lineages migrate
during period dt because it occurs with a probability on
the order of m2

e . Therefore, the probability that the
two lineages go to different subpopulations is 2(1–me dt)-
me dtE2me dt. Next, to consider coalescence, let Nes

denote the asymptotic effective size of a subpopulation.
The formula for Nes was derived by Johnson (1977)
and given by Eq. (8d). Remember that separation of
time scales ensures that the within-subpopulation age
transition of sample lineages is in equilibrium. Therefore,
the probability that the two lineages coalesce is
(1/2NesT) dt. In summary, the probability that the two
lineages continue to be separated in the same subpopula-
tion is 1–2me dt–(1/2NesT) dt, from which we obtain the
first term of Eq. (8a). To derive the second term, suppose
that the two lineages are in different subpopulations in year
t, which occurs with probability A(t). In this case,
coalescence never occurs. The probability that migration
pushes the two lineages into the same subpopulation is
2me dt/(s–1), with small terms neglected; thus, we obtain
the second term.

From Eq. (8), we readily obtain the following differential
equation describing a continuous Markov chain:

dHðtÞ
dt

¼ #f2me þ ð1=2NesTÞgHðtÞ þ 2meðs# 1Þ#1AðtÞ,

(9a)

dAðtÞ
dt

¼ 2meHðtÞ # 2meðs# 1Þ#1AðtÞ. (9b)

Combining Eqs. (9a) and (9b) and rescaling the time
unit, we have

d

du

HðuÞ
AðuÞ

 !

¼
#4Ms# s 4Ms=ðs# 1Þ

4Ms #4Ms=ðs# 1Þ

 !
HðuÞ
AðuÞ

 !

,

(10)

where u ¼ t/2sNesT, and M ¼ meNesT is the ‘‘effective
number of migrants per generation.’’ From Eq. (10),
d(H+A)/du ¼ #sH, meaning that the non-coalescence
probability decreases at a rate of #(1/2NesT)H per year.
This is reasonable because coalescence occurs only when
the two lineages are in the same subpopulation, and the
coalescent probability within the subpopulation is 1/2NesT.
Although Eq. (10) can be readily solved, it is much more
interesting to calculate the Laplace transforms of H(u) and
A(u), given in Appendix A, because the Laplace transforms
include more information about the coalescent process
than the effective size (for interesting applications of
Laplace transforms to a case with mutation, see Wilk-
inson-Herbots, 1998).
From the inverse Laplace transformation of Eq. (A.3),

we obtain

HðuÞ þ AðuÞ ¼
1

a2 # a1

X

i¼1;2

ð#1Þiðai þ sAð0Þ

þ 4s2M=ðs# 1ÞÞ expðaiuÞ, ð11aÞ

where

ai ¼
#sð4Ms=ðs# 1Þ þ 1Þð1' gÞ

2
(11b)

and a1 and a2 correspond to # and +, respectively, and

g ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1#
16Mðs# 1Þ

ð4Msþ s# 1Þ2

s

. (11c)

From Eqs. (4) and (11a), we obtain

Ne;t ¼ #
sNes

P
ið#1Þiðai þ sAð0Þ þ 4s2M=ðs# 1ÞÞexpðaiuÞP

ið#1Þiaiðai þ sAð0Þ þ 4s2M=ðs# 1ÞÞexpðaiuÞ
.

(12)

In Appendix B, we give the exact dynamics of Ii(t),Hij(t),
and Aij(t) without approximation. Fig. 1 shows the
comparison between the approximation by Eq. (12) and
the numerical results from Eqs. (B.1) and (B.2). Demo-
graphic parameters used for the numerical calculations in
Figs. 1A–C are given in Tables 1A–C, respectively. Open
squares and circles show the numerical results with the
initial conditions H11(0) ¼ 1 and A11(0) ¼ 1, respectively,
while the smooth lines show the approximations by
Eq. (12). Thus, the approximation fits the real value of
Ne,t very well (Fig. 1). The asymptotic effective size is
readily given as limt!1Ne;t:

Ne ¼ #
sNes

a1
¼

2Nes

ð4Ms=ðs# 1Þ þ 1Þð1# gÞ
. (13)
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From Eq. (13), it is confirmed that Ne ¼ Nes under s-1,
as expected. In contrast, when s is large, we can use the
approximations s/(s#1)E1 and gE1–8M/s(4M+1)2.
Thus, Eq. (13) becomes further simplified:

Ne ¼ sNes 1þ
1

4M

" #
. (14)

The above expression of the asymptotic effective size is
consistent with the results obtained in prior studies of
subdivided populations (see Section 3).

3. Discussion

Above, we show how to derive the instantaneous and
asymptotic effective size in a spatiotemporally structured
population using an approximation based on separation of
time scales. The main result is that we can construct simple
recurrence equations to describe the dynamics of non-
coalescence probabilities from the local effective size Nes

and the effective migration rate me. Thus, if Nes and me are
known, we do not have to consider within-population
details, such as the age-specific non-coalescence probabil-
ities Ii(t),Hij(t), and Aij(t) or size of each age Ni. This allows
us to reuse already known formulae for Nes to derive the
formula for the global Ne. Our approach is also very
intuitive if the meaning of reproductive values or the
effective migration rate is known. Obviously, this method
is not limited to a specific age structure, but is widely
applicable to many types of class structure.
As mentioned in Section 2, the coalescent process treated

here does not reduce to Kingman’s standard coalescent
because we assume that migration and within-subpopula-
tion coalescence occur on the same time scale, as is
assumed implicitly or explicitly in some models (e.g.,
Wright, 1931; Notohara, 1990; Wilkinson-Herbots, 1998).
Despite this irreducibility, separation-of-time-scale approx-
imation transforms the original complex structured coa-
lescent to a much simpler structured coalescent because it
collapses the structure concerning the fast process, i.e., age
transition (Nordborg and Krone, 2002).
In the original island model without age structure, the

effective size of the entire population is given by Ne ¼ sN/
(1–FST) (Wright, 1943), where N is subpopulation size and
FST is Wright’s coefficient of inter-subpopulation genetic
differentiation (Wright, 1951). As is known well, FST in
this model is approximately given by FST ¼ 1/(4Nm+1)
for sufficiently large s, where m is the migration rate
(Takahata, 1983; Crow and Aoki, 1984; Slatkin, 1991; Nei
and Takahata, 1993); therefore, we have Ne ¼ sN(1+1/
4Nm). Note that Eq. (14) reduces to this formula, when
there is only one age class. Moreover, a number of
formulae similar to Eq. (14) were derived by prior authors
for models with discrete generations (for a review, see
Wang and Caballero, 1999). For example, suppose a
subdivided population with separate sexes and discrete
generations, and let Nm (Nf) and mm (mf) denote the
number of males (females) per subpopulation and the
migration rate of males (females), respectively. Substituting
T ¼ 1, Nes ¼ 4NmNf/(Nm+Nf), and me ¼ (mm+mf)/2 for
Eq. (14), we obtain the formula of the effective size for
diploid organisms (Wang, 1997b; Berg et al., 1998).
Likewise, substituting T ¼ 1, Nes ¼ 9NmNf/(4Nm+2Nf),
and me ¼ (mm+2mf)/3 for Eq. (14), we obtain the formula
for haplodiploid organisms, where males are haploid (Berg
et al., 1998; Wang, 1999).
In coalescent theory, the expected or mean coalescent

time is a main concern because it is related to various
interesting statistical parameters, such as FST (Slatkin,
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Fig. 1. The dynamics of instantaneous effective size Ne,t numerically
computed from Eqs. (B.1) and (B.2). The open squares and circles show
the results for initial conditions H11(0) ¼ 1 and A11(0) ¼ 1, respectively.
The smooth lines show approximations obtained from the separation-of-
time-scale analysis (Eq. (12)). Parameter values for (A)–(C) are given in
Tables 1A–C, respectively.
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1991). Here, instead, we focus on non-coalescence prob-
abilities to consider instantaneous and asymptotic effective
size. We can learn many interesting things from Laplace
transforms of non-coalescence probabilities (see also
Wilkinson-Herbots, 1998). For example, expected coales-
cent time for a given sample, ET, is readily derived: As
shown by Slatkin (1991), ET ¼

Rþ1
0 ðHðuÞ þ AðuÞÞ du ¼

LHþAð0Þ. Therefore, from Eq. (A.3), we have

ET ¼ LHþAð0Þ ¼ 1þ
Að0Þðs# 1Þ

4Ms
. (15)

Thus, the (scaled) expected coalescent time is equal to 1
for two genes from the same subpopulation [A(0) ¼ 0] and
equal to 1+(s–1)/4Ms for those from different subpopula-
tions [A(0) ¼ 1], fully consistent with results of prior works
(e.g., Slatkin, 1991; Wilkinson-Herbots, 1998). A more
interesting quantity may be expected time spent in the same
subpopulation by the sample lineages, which we denote by
ETH:

ETH ¼ LH ð0Þ ¼
1

s
. (16)

Therefore, ETH does not depend on the initial sample
configuration. However, the expected time spent in
different subpopulations, ETA, is given by

ETA ¼ LAð0Þ ¼ 1#
1

s

" #
1þ

Að0Þ
4M

" #
. (17)

Hence, if the sample is from the same subpopulation
[A(0) ¼ 0], then ETA is 1–1/s. Whereas ETH ( ¼ 1/s) for
two lineages from the same subpopulation decreases with
increasing the number of subpopulations s, it is counter-
balanced by increases in ETA ( ¼ 1–1/s); as a result, ET for
the two lineages from the same subpopulation does not
depend on population subdivision (Hein et al., 2005).
Higher moments of these quantities are also readily derived
from Laplace transforms of non-coalescence probabilities,
although we do not show them here.
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Appendix A. Laplace transforms of the solution to Eq. (10)

LH(z), LA(z), and LH+A(z), below, are the Laplace
transforms of H(u), A(u), and H(u)+A(u), respectively;
e.g., LH ðzÞ ¼

Rþ1
0 e#zuHðuÞ du:

LH ðzÞ ¼
Hð0Þzþ 4Ms=ðs# 1Þ

z2 þ sð4Ms=ðs# 1Þ þ 1Þzþ 4s2M=ðs# 1Þ
, (A.1)

LAðzÞ ¼
Að0Þzþ 4Msþ sAð0Þ

z2 þ sð4Ms=ðs# 1Þ þ 1Þzþ 4s2M=ðs# 1Þ
, (A.2)

LHþAðzÞ ¼
zþ 4s2M=ðs# 1Þ þ sAð0Þ

z2 þ sð4Ms=ðs# 1Þ þ 1Þzþ 4s2M=ðs# 1Þ
,

(A.3)

where we used the fact that H(0)+A(0) ¼ 1.

Appendix B. Numerical computation of effective size

Here, we give the recurrence equations describing the
exact dynamics of non-coalescence probabilities Ii(t), Hij(t),
and Aij(t) without derivation. These quantities change with
two steps: migration and reproduction. Therefore, we need
two sets of corresponding recurrence equations. The
following (B.1) equations are recurrence equations for the
migration process. Asterisks (() denote non-coalescence
probabilities after one backward migration:

I(i ðtÞ ¼ I iðtÞ, (B.1a)
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Table 1
Demographic parameters used in the numerical computation of the instantaneous effective size Ne,t

Age (i) 1 2 3 4 5

(A) Number of subpopulations (s) ¼ 500, number of age classes (n) ¼ 5
Ni 250 200 150 100 50
pi 0.0 0.2 0.4 0.3 0.1
mi 0.00 0.02 0.03 0.02 0.01

(B) Number of subpopulations (s) ¼ 50, number of age classes (n) ¼ 3
Ni 400 200 100
pi 0.5 0.3 0.2
mi 0.005 0.004 0.003

(C) Number of subpopulations (s) ¼ 2, number of age classes (n) ¼ 5
Ni 1000 700 500 300 250
pi 0.0 0.0 0.1 0.5 0.4
mi 0.000 0.000 0.001 0.003 0.005

Y. Kobayashi, N. Yamamura / Theoretical Population Biology 71 (2007) 174–181 179



H(
ijðtÞ ¼ ð1#miÞð1#mjÞ þmimj

1

s# 1

$ %
HijðtÞ

þ fmið1#mjÞ þ ð1#miÞmjg
&

þmimj
s# 2

s# 1

'
1

s# 1
AijðtÞ, ðB:1bÞ

H(
iiðtÞ ¼ 1#mið Þ

Nið1#miÞ # 1

Ni # 1

" #
þmi

Nimi # 1

Ni # 1

" #
ji

$ %
HiiðtÞ

þ 2mið1#miÞ
1

s# 1
þm2

i

s# 2

s# 1
ji

& '
AiiðtÞ, ðB:1cÞ

A(
ijðtÞ ¼ ð1#miÞmj þmið1#mjÞ þmimj

s# 2

s# 1

$ %
HijðtÞ

þ ð1#miÞð1#mjÞ þ fmið1#mjÞ þ ð1#miÞmjg
s# 2

s# 1

&

þmimj 1#
s# 2

ðs# 1Þ2

" #'
AijðtÞ, ðB:1dÞ

A(
iiðtÞ ¼ 2mi

Nið1#miÞ
Ni # 1

" #
þmi

Nimi # 1

Ni # 1
ð1# jiÞ

$ %
HiiðtÞ

þ ð1#miÞ2 þ 2mið1#miÞ
s# 2

s# 1

&

þm2
i 1#

s# 2

s# 1

" #
ji

$ %'
Aii, ðB:1eÞ

where i 6¼j and

ji ¼
Nimi # 1

ðs# 1ÞNimi # 1
. (B.1f)

From Eq. (B.1), it is easily shown that H(
ijðtÞ þ A(

ijðtÞ ¼
HijðtÞ þ AijðtÞ for any i and j; this is expected because no
coalescence occurs during the migration process. The
following (B.2) equations are recurrence equations for the
reproduction process:

I iðtþ 1Þ ¼ I(iþ1ðtÞ þ
1

Ni
piH

(
1iþ1ðtÞ þ

1

2Ni
p2i ðH

(
11ðtÞ

þ I(1ðtÞÞ, ðB:2aÞ

Hijðtþ 1Þ ¼ H(
iþ1jþ1ðtÞ þ piH

(
1jþ1ðtÞ þ pjH

(
iþ11ðtÞ

þ pipjðH
(
11ðtÞ þ I(1ðtÞÞ, ðB:2bÞ

Hiiðtþ 1Þ ¼ H(
iþ1iþ1ðtÞ þ 2 1#

1

Ni

" #
piH

(
1iþ1ðtÞ

þ 1#
1

Ni

" #
p2i ðH

(
11ðtÞ þ I(1ðtÞÞ, ðB:2cÞ

Aijðtþ 1Þ ¼ A(
iþ1jþ1ðtÞ þ piA

(
1jþ1ðtÞ þ pjA

(
iþ11ðtÞ

þ pipjA
(
11ðtÞ, ðB:2dÞ

where i 6¼j in Eq. (B.2b).

References

Berg, L.M., Lascoux, M., Pamilo, P., 1998. The infinite island model with
sex-differentiated gene flow. Heredity 81, 63–68.

Caballero, A., 1994. Developments in the prediction of effective
population size. Heredity 73, 657–679.

Chesser, R.K., Rhodes Jr., O.E., Sugg, D.W., Schnabel, A., 1993.
Effective sizes for subdivided populations. Genetics 135, 1221–1232.

Choy, S.C., Weir, B.S., 1978. Exact inbreeding coefficients in populations
with overlapping generations. Genetics 89, 591–614.

Crow, J.F., Aoki, K., 1984. Group selection for a polygenic behavioral
trait: estimating the degree of population subdivision. Proc. Natl.
Acad. Sci. USA 81, 6073–6077.

Crow, J.F., Kimura, M., 1970. An Introduction to Population Genetics
Theory. Harper & Row, New York.

Donnelly, P., Tavare, S., 1995. Coalescents and genealogical structure
under neutrality. Annu. Rev. Genet. 29, 401–421.

Felsenstein, J., 1971. Inbreeding and variance effective numbers in
populations with overlapping generations. Genetics 68, 581–597.

Hein, J., Schierup, M.H., Wiuf, C., 2005. Gene Genealogies, Variation
and Evolution: a Primer in Coalescent Theory. Oxford University
Press, New York.

Hill, W.G., 1972. Effective size of populations with overlapping
generations. Theor. Popul. Biol. 3, 278–289.

Hill, W.G., 1979. A note on effective population size with overlapping
generations. Genetics 92, 317–322.

Hudson, R.R., 1983. Properties of a neutral allele model with intragenic
recombination. Theor. Popul. Biol. 23, 183–201.

Johnson, D.L., 1977. Inbreeding in populations with overlapping
generations. Genetics 87, 581–591.

Kingman, J.F.C., 1982a. The coalescent. Stochast. Proc. Appl. 13,
235–248.

Kingman, J.F.C., 1982b. Exchangeability and the evolution of large
populations. In: Koch, G., Spizzichino, F. (Eds.), Exchange-
ability in Probability and Statistics. North-Holland, Amsterdam,
pp. 97–112.

Kingman, J.F.C., 1982c. On the genealogy of large populations. J. Appl.
Probab. 19A, 27–43.
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