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Abstract

Calculations to derive effective population size become highly complicated when complex population structure is considered. We
provide an easy method of computing the effective size of a subdivided population with overlapping generations (a spatiotemporally
structured population) using an approximation based on separation of time scales. We also numerically compute the effective size to
verify the accuracy of the derived formula. Various interesting quantities, including moments of coalescent time, are readily derived using

this approach.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

One of the key concepts in population genetics is the
notion of effective population size (N,). Among the several
definitions of N,, “inbreeding effective size” in particular is
defined as the size of the Wright-Fisher idealized population
that experiences the same rate of change in the degree of
inbreeding (Crow and Kimura, 1970). In contrast to this
classic “forward” view of inbreeding effective size (hereafter,
we omit “inbreeding” for simplicity), the recent develop-
ment of coalescent theory (Kingman, 1982a—c; Hudson,
1983; Tajima, 1983; for reviews, see Donnelly and Tavare,
1995; Nordborg, 2001; Wakeley, 2004) has provided a
“backward” interpretation, which may be viewed as the
reciprocal of the rate of coalescence of two sample lincages
per generation (e.g., Rousset, 2004; Hein et al., 2005).
Regardless of the viewpoint, the concept of effective size
enables us to apply studies of an idealized population to
the investigation of non-ideal populations with various
complex structures. Since the pioneering work of Wright
(1931), population geneticists have derived many formulae
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to calculate effective size under a variety of assumptions,
such as separate sexes, non-random contribution of gametes
from parents to offspring, or temporally fluctuating popula-
tion size (for a review, see Caballero, 1994).

In particular, the effective sizes of subdivided popula-
tions have interested population geneticists (Chesser et al.,
1993; Sugg and Chesser, 1994; Wang, 1997a,b; Whitlock
and Barton, 1997; Nunney, 1999; Wang, 1999; Wang and
Caballero, 1999). Researchers have also explored the effect
of within-subpopulation structure, such as overlapping
generations (Felsenstein, 1971; Hill, 1972, 1979; Johnson,
1977; Choy and Weir, 1978; Pollak, 1980, 1990, 2000).
Both of these factors significantly affect effective popula-
tion size. Because many populations in the natural world
have simultaneous spatial and age structures, an under-
standing of their joint effects is important. Rousset (1999)
first calculated genetic differentiation and effective size in
spatially structured populations (both island-like and
stepping-stone populations) with general within-subpopu-
lation class structure. However, the simultaneous consid-
eration of both within-subpopulation and spatial structures
entails large and highly complicated calculations.

Here, we present an easy method of calculating the
effective size of a spatiotemporally structured population
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using an approximation based on ‘“‘separation of time
scales” (Nordborg, 1997, 2001; Wakeley and Aliacar, 2001;
Nordborg and Krone, 2002). Separation of time scales
assumes that the rates of some processes (““fast’ processes)
are much quicker than those of others (“slow’ processes);
this method has been successful in reducing a structured
coalescent process to (1) an unstructured process (e.g.,
Nordborg, 1997; see also Nagylaki, 1980), (2) a process
very similar to unstructured coalescent (Nordborg and
Donnelly, 1997; Mo6hle, 1998; Wakeley and Aliacar, 2001),
or (3) a structured coalescent process with reduced
complexity (Nordborg, 1997, Nordborg and Krone,
2002). Our model corresponds to the third case.

2. Theory

We consider a structured coalescent process in a diploid
hermaphrodite population subdivided into s subpopula-
tions with overlapping generations. Except for spatial
subdivision and migration, this population is essentially the
same as that considered in some previous studies (e.g.,
Felsenstein, 1971; Hill, 1972; Johnson, 1977). The life cycle
of the organism is as follows: At any given year, individuals
born i years ago are referred to as ‘“‘age-i individuals,”
where the lowest age is one. Every subpopulation has N;
individuals of age i. We assume that the demographic
structure is in equilibrium, so that N; does not change over
time. Because the size of a cohort does not increase with
age, N;=N; when i<j. Thus, N;/N; gives the survival rate
from age j to age i. Every year, reproduction and aging
occur, followed by migration.

In the reproductive process, mating occurs within each
subpopulation. We assume that a gene of a newborn comes
from an age-i individual with probability p;. This means
that an age-i individual is invited to a single mating event
with probability p;/N;. Therefore, an age-i individual mates
with itself with probability p,/N; Note that Y ;. p; =1,
where n is the maximum reproductive age. This setting
gives the following transition probability matrix for age
transition:

Py P P3 - D ot Dy
1

1 0

where the (i,7)th element gives the probability that a gene in
age i came from age j in the previous year. Note that the
subdiagonal elements are all unity and elements in white
space are all zero. This is because a gene of an age-i
individual comes from an age-(i—1) individual, i.e.,
the same individual, with probability one, unless the
individual is a newborn (i=1). There may be non-

reproductive age classes for which p; = 0. We just suppose
that the above matrix is irreducible and aperiodic, which is
usually the case, and ensures ergodicity (Nagylaki, 1980).
After reproduction, the ages of all individuals increase by
one.

Migration then occurs. N;m; individuals of age i in each
subpopulation are randomly dispersed to the other s—1
subpopulations; thus, m; is the migration rate of age-i
individuals. We assume that at least some m;’s are non-
zero, so that subpopulations are not entirely isolated.
Moreover, we assume ‘‘conservative migration,” which
means the number of immigrants is exactly the same as that
of emigrants for each age (Nagylaki, 1980). After the
migration phase, the next year begins.

To calculate the effective size, we consider the backward
fate of a sample of two genes drawn from the population.
For this purpose, we consider the probability that the
lineages of the sample genes do not coalesce at least within
a given number of years, which we refer to as the “non-
coalescence probability.” From the definition, the non-
coalescence probability is equivalent to the distribution
function of the coalescent time. We decompose the non-
coalescence probability into two components. First, H(¢) is
the probability that the two lineages are still separated and
in the same subpopulation in year ¢ (we count years
backward, so that, for example, t =0 and oo mean the
current year and the infinitely distant past, respectively).
Second, A(?) is the probability that the two lineages are still
separated and in different subpopulations. Thus, the total
non-coalescence probability is given by H(f)+ A(f). We
further decompose the above two probabilities, although
we use this sub-decomposition only for numerical calcula-
tion. We define I(¢) as the probability that the lincages are
separated in the same individual of age i. We define H(?)
as the probability that the lineages are separated in two
individuals of ages i and j in the same subpopulation. We
define 4,(#) in a similar manner. From the definitions,
H(t) =Y () +> ;Ht) and A(t) = ;A,(t). Note that
we did not specify the initial sample configuration, but
instead, focused on the ancestral configuration. In this
point, our method differs from some prior works, which
focused on the initial sample configuration (Slatkin, 1991;
Wilkinson-Herbots, 1998). In our setting, the initial sample
configuration is specified by the initial condition of the
non-coalescence probabilities; that 1is, for example,
H;{0) =1 means that the two genes were sampled from
two individuals of age i and age j in the same subpopula-
tion.

Because we do not assume mutation, the non-coales-
cence probability H(7)+A4(tr) decreases with ¢ because of
year-to-year coalescence. Once the decreasing rate
[H(t+ 1)+A(t+ D]/[H(t)+A(t)] asymptotically converges
on a value, denoted by 4, N, is calculated from the
following relationship (Felsenstein, 1971):

1

Ne=sra=7

2
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where T is the “generation time.” Roughly speaking, T
represents the length of one generation cycle (for a precise
definition of T, see Felsenstein, 1971; Johnson, 1977; see
also Eq. (7)). From the “forward” viewpoint, / is equal to
the largest non-unit eigenvalue of the transition matrix that
gives the change in probabilities of identity by descent
between genes of various ages (e.g., Johnson, 1977;
Rousset, 2004).We may refer to the effective size given by
the above equation as the “asymptotic” effective size to
distinguish it from the “instantaneous’ effective size, which
we define as

1
2T — (H(t+ 1)+ A(t + 1)) /(H(0) + A1)

Obviously, when ¢ approaches infinity, N,, must con-
verge on N, N,,is as important as N, because it can
measure the rate of recent coalescence. When there is no
confusion, we use “‘effective size” to mean the asymptotic
effective size. Hereafter, we mainly consider a continuous-
time approximation, assuming # is a continuous variable.
In this case, we may replace H(¢+1)-H(t) by dH(t)/dt (and
treat A(¢) similarly), so that the instantaneous effective size
is given as

Ne,l = (3)

H(1) + A(1)
—2T((dH(1)/dr) + (dA(1)/dr))

N, = “4)
and the asymptotic effective size is given as the limit of
the above expression where ¢ approaches infinity. From
Eq. (4), we have (d/dt)[H(t)+A(¢)] =—(1/2N, T)[H(t)+
A(#)], meaning that the per-year rate of coalescence in year
t is given by 1/2N, T, which converges on 1/2N,T under
t— co.

Now, we show how to calculate the instantaneous and
asymptotic effective size using an approximation based on
separation of time scales (Nordborg, 1997, 2001; Wakeley
and Aliacar, 2001; Nordborg and Krone, 2002). We
assume that all migration rates are very low (m;<1) and
all age classes are very large in size (N;>1). In the original
Wright’s island model, if migration occurs on a faster time
scale than within-island coalescence, the entire process fully
collapses to Kingman’s coalescent with appropriate rescal-
ing of the time unit (Wakeley, 2004; Sjodin et al., 2005);
this means that sample lineages are exchangeable and that
the “coalescent effective size™ exists (Nordborg and Krone,
2002; Sjodin et al., 2005). On the other hand, if migration
occurs on a slower time scale than within-island coales-
cence, the process again reduces to Kingman’s process,
except for the initial short phase, whose span is negligible
for the entire process (Wakeley, 2004). We are interested in
a situation lying between these two, where the process does
not collapse to Kingman’s coalescent (Notohara, 1990;
Nordborg, 1997; Wilkinson-Herbots, 1998; Nordborg and
Krone, 2002). We assume that the following limits exist for
all i<n:

N
0< lim F’:ai<1 (5a)

Ny—00 [V

and for all non-zero m;:

0< lim mNg =y, < + o0, (5b)
N;— o0

where Ny = >""_| N, i.e., the total size of a subpopulation.
The existence of these limits ensures that migration and
coalescence occur on the same time scales (Nordborg, 1997;
see also Sjodin et al., 2005). On the other hand, we assume
that age transitions occur on a separate, faster time scale
than migration and coalescence, which is ensured by

lim (1 — P;)Ny = +o0, (5¢)
Ng— o0
where Pj; is the (ij)th element of matrix (1). Because all
diagonal elements of the matrix are 0 except for Py = py,
Eq. (5¢) is equivalent to limy, (1 — p; )Ny = +00. Eq. (5¢)
means that we assume a “‘strong-migration limit” for age
transitions (Nagylaki, 1980); that is, we consider the limit in
which any slow events, i.e., migration and coalescence, do
not occur before age transition reaches equilibrium. In terms
of Nordborg and Krone (2002), each age group within each
subpopulation is a “deme” and each subpopulation is a
“cluster” of demes; migration of lineages occurs quickly
within each cluster, but slowly between clusters.

We are interested in the rate of coalescence, which occurs
on the slower time scale. Therefore, we can assume that the
event on the faster time scale, i.e., age transition, is always
in equilibrium on the slower time scale, which is the essence
of separation-of-time-scales approximation. The equili-
brium probability that a lineage is in an age is known as
the “class reproductive value” of the age (e.g., Taylor,
1990). We denote the class reproductive value of age i as c;.
Mathematically, ¢; is given by the ith component of the
dominant left eigenvector of transition probability matrix
(1), where the vector is normalized to satisfy Y ;= 1 (e.g.,
Taylor, 1990; Rousset, 2004). Obviously, for matrix (1), ¢;
is given as

o“=>7 (©)

where T is the “generation time,” and is given as
n n n
T=Y =) in (7)
i=1 k=i i=1
as shown by Felsenstein (1971) and Johnson (1977). The
intuitive meaning of the generation time is the expected age
of a parent of a newborn, as is clear from the rightmost
expression in Eq. (7). Below, we consider the slow-time-
scale events, assuming that each linecage is in age i with
probability c;.
Let us consider how to calculate H(t+df) and A(t+dt)
from H(t) and A(t), where dt is a infinitesimal positive. We
first show the results:

H(t +df) = {1 — 2m, dt — (1/2N T) di} H(t)
+ 2me /(s — 1) dtA(), (82)

A(t+ dt)y = 2m, dtH(t) + {1 — 2m, dt/(s — 1)} A(2), (8b)
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where

me = Z cim; (8¢c)

and

T
(/N + TP, ((1/N) = (1/Nizy)|

(8d)

es

We only explain Eq. (8a), since Eq. (8b) is derived
analogously. The first term on the right-hand side of
Eq. (8a) is the probability that the sample lineages are
separated in the same subpopulation in year ¢ and continue
to be so until year t+dt. On the other hand, the second term
is the probability that the sample lineages are separated in
different subpopulations in year ¢ and enter a single
subpopulation by year t+dt. The first term is derived as
follows. Suppose that the two lineages are in the same
population in year ¢, which occurs with probability H(z). In
this case, two kinds of events can occur: migration or
coalescence. Let us first consider migration. Because a
lineage is in age i with probability ¢; the per-year
probability that a lineage migrates is given by (8c).
The quantity m,, given by Eq. (8c), is known as the
“effective migration rate” (Rousset, 1999, 2004). We
can ignore the possibility that both lineages migrate
during period dt because it occurs with a probability on
the order of m?. Therefore, the probability that the
two lineages go to different subpopulations is 2(1-m, dt)-
m.dt~2m,dt. Next, to consider coalescence, let N,
denote the asymptotic effective size of a subpopulation.
The formula for N, was derived by Johnson (1977)
and given by Eq. (8d). Remember that separation of
time scales ensures that the within-subpopulation age
transition of sample lineages is in equilibrium. Therefore,
the probability that the two Ilineages coalesce is
(1/2N,;T)dt. In summary, the probability that the two
lineages continue to be separated in the same subpopula-
tion is 1-2m,dt—(1/2N.T)dt, from which we obtain the
first term of Eq. (8a). To derive the second term, suppose
that the two lineages are in different subpopulations in year
t, which occurs with probability A(f). In this case,
coalescence never occurs. The probability that migration
pushes the two lineages into the same subpopulation is
2m,dt/(s—1), with small terms neglected; thus, we obtain
the second term.

From Eq. (8), we readily obtain the following differential
equation describing a continuous Markov chain:

di[(l‘) = —{2m, + (1/2NT)}H(t) + 2m.(s — 1)_114(1),
(%)
L = ()~ 2= 1) 4, (9b)

dt

Combining Eqgs. (9a) and (9b) and rescaling the time

unit, we have

d [ Hu) —4Ms—s 4Ms/(s—1) H(u)

du\ Aw) | ~ 4Ms  —4Ms/(s—1) )\ Aw) |’
(10)

where u = t/2sN,T, and M = m,N,T is the “effective
number of migrants per generation.” From Eq. (10),
d(H+A)/du = —sH, meaning that the non-coalescence
probability decreases at a rate of —(1/2N,T)H per year.
This is reasonable because coalescence occurs only when
the two lineages are in the same subpopulation, and the
coalescent probability within the subpopulation is 1/2N,,T.
Although Eq. (10) can be readily solved, it is much more
interesting to calculate the Laplace transforms of H(u) and
A(u), given in Appendix A, because the Laplace transforms
include more information about the coalescent process
than the effective size (for interesting applications of
Laplace transforms to a case with mutation, see Wilk-
inson-Herbots, 1998).

From the inverse Laplace transformation of Eq. (A.3),
we obtain

Hu) + A(u) = ﬁ Z(—l)"(a,- + 5A4(0)
i=1,2

+ 452 M /(s — 1)) exp(o;u), (11a)
where

—s(4Ms/(s— 1)+ D(1 Fy)
o = 3

and o and o, correspond to — and +, respectively, and

(11b)

16M(s— 1)
D
AMs+s—1)
From Egs. (4) and (11a), we obtain

SNy (= 1) (o + sA(0) + 45 M /(s — 1))exp(oiu)
S (=1 oo + sA0) + 4s2M /(s — 1))exp(ou)
(12)

In Appendix B, we give the exact dynamics of I,(f), Hy(1),
and A4,(r) without approximation. Fig. 1 shows the
comparison between the approximation by Eq. (12) and
the numerical results from Egs. (B.1) and (B.2). Demo-
graphic parameters used for the numerical calculations in
Figs. 1A—C are given in Tables 1A—C, respectively. Open
squares and circles show the numerical results with the
initial conditions H1;(0) = 1 and 4;;(0) = 1, respectively,
while the smooth lines show the approximations by
Eq. (12). Thus, the approximation fits the real value of
N, very well (Fig. 1). The asymptotic effective size is
readily given as lim,_, oo N

SN g5 2N s

Ne=- o (AMs/(s— )+ D)1 —y) (13)

(11c)

Ne,z =
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Fig. 1. The dynamics of instantaneous effective size N,, numerically
computed from Egs. (B.1) and (B.2). The open squares and circles show
the results for initial conditions H;;(0) = 1 and 4,,(0) = 1, respectively.
The smooth lines show approximations obtained from the separation-of-
time-scale analysis (Eq. (12)). Parameter values for (A)—(C) are given in
Tables 1A-C, respectively.

From Eq. (13), it is confirmed that N, = N,, under s— 1,
as expected. In contrast, when s is large, we can use the
approximations s/(s—1)~1 and yx~1-8M/s(4M+1)>.
Thus, Eq. (13) becomes further simplified:

1
N, — sNes(l +m)~ (14)

The above expression of the asymptotic effective size is
consistent with the results obtained in prior studies of
subdivided populations (see Section 3).

3. Discussion

Above, we show how to derive the instantaneous and
asymptotic effective size in a spatiotemporally structured
population using an approximation based on separation of
time scales. The main result is that we can construct simple
recurrence equations to describe the dynamics of non-
coalescence probabilities from the local effective size N,
and the effective migration rate m,. Thus, if N,, and m, are
known, we do not have to consider within-population
details, such as the age-specific non-coalescence probabil-
ities I(t), Hy(t), and A;(t) or size of each age N,. This allows
us to reuse already known formulae for N, to derive the
formula for the global N,. Our approach is also very
intuitive if the meaning of reproductive values or the
effective migration rate is known. Obviously, this method
is not limited to a specific age structure, but is widely
applicable to many types of class structure.

As mentioned in Section 2, the coalescent process treated
here does not reduce to Kingman’s standard coalescent
because we assume that migration and within-subpopula-
tion coalescence occur on the same time scale, as is
assumed implicitly or explicitly in some models (e.g.,
Wright, 1931; Notohara, 1990; Wilkinson-Herbots, 1998).
Despite this irreducibility, separation-of-time-scale approx-
imation transforms the original complex structured coa-
lescent to a much simpler structured coalescent because it
collapses the structure concerning the fast process, i.c., age
transition (Nordborg and Krone, 2002).

In the original island model without age structure, the
effective size of the entire population is given by N, = sN/
(1-Fs7) (Wright, 1943), where N is subpopulation size and
Fsr is Wright’s coefficient of inter-subpopulation genetic
differentiation (Wright, 1951). As is known well, Fg7 in
this model is approximately given by Fgr= 1/(4Nm+1)
for sufficiently large s, where m is the migration rate
(Takahata, 1983; Crow and Aoki, 1984; Slatkin, 1991; Nei
and Takahata, 1993); therefore, we have N, = sN(1+1/
4Nm). Note that Eq. (14) reduces to this formula, when
there is only one age class. Moreover, a number of
formulae similar to Eq. (14) were derived by prior authors
for models with discrete generations (for a review, see
Wang and Caballero, 1999). For example, suppose a
subdivided population with separate sexes and discrete
generations, and let N,, (N, and m,, (m, denote the
number of males (females) per subpopulation and the
migration rate of males (females), respectively. Substituting
T'=1, No=4N,NjJ(N,,+Ny, and m, = (m,,+my)/2 for
Eq. (14), we obtain the formula of the effective size for
diploid organisms (Wang, 1997b; Berg et al., 1998).
Likewise, substituting T =1, N, = 9N,,,Ny/(4N,,+2N)),
and m, = (m,,+2my)/3 for Eq. (14), we obtain the formula
for haplodiploid organisms, where males are haploid (Berg
et al., 1998; Wang, 1999).

In coalescent theory, the expected or mean coalescent
time is a main concern because it is related to various
interesting statistical parameters, such as Fgr (Slatkin,
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Table 1

Demographic parameters used in the numerical computation of the instantaneous effective size N, ,

Age (i) 1 2 3 4 5
(A) Number of subpopulations (s) = 500, number of age classes (n) =5

N; 250 200 150 100 50
Di 0.0 0.2 0.4 0.3 0.1
m; 0.00 0.02 0.03 0.02 0.01
(B) Number of subpopulations (s) = 50, number of age classes (n) = 3

N; 400 200 100

Di 0.5 0.3 0.2

m; 0.005 0.004 0.003

(C) Number of subpopulations (s) = 2, number of age classes (n) =5

N; 1000 700 500 300 250
Di 0.0 0.0 0.1 0.5 0.4
m; 0.000 0.000 0.001 0.003 0.005
1991). Here, instead, we focus on non-coalescence prob- Acknowledgments

abilities to consider instantaneous and asymptotic effective
size. We can learn many interesting things from Laplace
transforms of non-coalescence probabilities (see also
Wilkinson-Herbots, 1998). For example, expected coales-
cent time for a given sample, ET, is readily derived: As
shown by Slatkin (1991), ET = ["(H(u) + A(w)) du =
L1 4(0). Therefore, from Eq. (A.3), we have

A(0)(s — 1)

ET = Lisa(0) = 1+ =

(15)

Thus, the (scaled) expected coalescent time is equal to 1
for two genes from the same subpopulation [4(0) = 0] and
equal to 1+ (s—1)/4Ms for those from different subpopula-
tions [4(0) = 1], fully consistent with results of prior works
(e.g., Slatkin, 1991; Wilkinson-Herbots, 1998). A more
interesting quantity may be expected time spent in the same
subpopulation by the sample linecages, which we denote by
ETH:

ETy = Ly(0) = é (16)

Therefore, ETy does not depend on the initial sample
configuration. However, the expected time spent in
different subpopulations, ET 4, is given by

_ _ (1 A0
ETA_LA(O)_<1 s><1+4M). (17)

Hence, if the sample is from the same subpopulation
[4(0) = 0], then ET, is 1-1/s. Whereas ETy (= 1/s) for
two lineages from the same subpopulation decreases with
increasing the number of subpopulations s, it is counter-
balanced by increases in ET 4 ( = 1-1/s); as a result, ET for
the two lineages from the same subpopulation does not
depend on population subdivision (Hein et al., 2005).
Higher moments of these quantities are also readily derived
from Laplace transforms of non-coalescence probabilities,
although we do not show them here.
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Appendix A. Laplace transforms of the solution to Eq. (10)

Li(z), L4(z), and Ly4(z), below, are the Laplace
transforms of H(u), A(u), and H(u)+ A(u), respectively;
e.g., Ly(z) = [ e H(u) du:

H(0)z+4Ms/(s— 1)

Lu@®) =57 S@Ms/(s — 1)+ Dz +4s2M /(s — 1) D
B A(0)z + 4 Ms + sA(0)
L) =3 + 5(4Ms/(s — 1)+ Dz +4s2M /(s — 1)° (A2
. ~ Z+ 45 M /(s = 1) + 54(0)
14 = o @M 5 — D)+ Dz + 42 M s — 1)
(A3)

where we used the fact that H(0)+ A4(0) = 1.

Appendix B. Numerical computation of effective size

Here, we give the recurrence equations describing the
exact dynamics of non-coalescence probabilities I,(1), Hy(?),
and A4,;() without derivation. These quantities change with
two steps: migration and reproduction. Therefore, we need
two sets of corresponding recurrence equations. The
following (B.1) equations are recurrence equations for the
migration process. Asterisks (*) denote non-coalescence
probabilities after one backward migration:

I'(0) = I,(v), (B.1a)
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Hi(1) = {(1 —m;)(1 —mj)—i-mmj

} H (1)

- {{mxl — my) + (1 = myym;)

s—21 1

130 = {0 =y (VOEIIE ) on (B S oo

+ {2m,~(1 —m,»)si 1 +m? u ] (D), (B.1c)

A;;(t) = {(1 m;)m; + m;(1 —m,)—l—mmjs Z}Hu(t)

+ [(1 —m)(1 = my) + {mi(1 —my) + (1 — mi)m/'}g
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where i#j and
Nim,- -1
PTG DN T (B0

From Eq. (B.1), it is easily shown that H}(7) + A HOES

Hj(t) + A;(¢) for any i and j; this is expected because no
coalescence occurs during the migration process. The
following (B.2) equations are recurrence equations for the
reproduction process:

1 1
I(t+1)—11+1(t)+ pz t+l(t)+ Npl(H l(t)
+ I7(1)), (B.2a)
Hy(t+1) = Hip () + p;HY (0 + piHE ()
+ pip,(HT,(1) + 17(0)), (B.2b)
1
H;(t+1) = ;‘k+li+l([)+2<1 _ﬁ) 1i41(0)
1
1oy Jpamono. @2
Ayt + 1) = A7 ;0 () + piAT (O + piATL, (D
+ DD 1@, (B.2d)

where i#j in Eq. (B.2b).
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