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Abstract

Plants show phenological responses to herbivory. Some enclosure experiments have demonstrated that the onset of the peak flowering

season is dependent on grazing pressure. We constructed a mathematical model using Pontryargin’s maximum principle to investigate

changes in flowering time by examining shifts in resource allocation from vegetative to reproductive plant components. We represented a

primary production of a plant individual by two types of function of vegetative part size, a linear function and a convex non-linear

function. The results of a linear production model indicate that optimal phenology follows a schedule that switches from the production

of vegetative parts to that of reproductive parts at a given time (‘bang–bang’ control). However, in a non-linear model, a singular control,

wherein the plant invests in both productive and reproductive parts, may be included between obligate production and reproduction

periods. We assumed that the peak of the flowering season occurs immediately following the exclusive investment in reproduction. In a

linear production model, differential herbivory rates on the vegetative and reproductive parts of a plant resulted in shifts in the peak

flowering time. A higher herbivory rate on the vegetative components advanced the peak, whereas it was delayed when grazing pressure

focused on reproductive components of the plant. In the non-linear production model, increased grazing pressure tended to postpone the

flowering peak. These results corresponded well with results of enclosure experiments, thus suggesting adaptive control of flowering time

in plants.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

A major developmental transition in flowering plants
is the switch from vegetative to reproductive develop-
ment. To maximize reproductive success, it is essential that
the timing of this transition is correct. Many plants
respond to environmental cues such as changes in day
length and temperature, the molecular mechanisms of
which have been well studied (Simpson and Dean, 2002).
Moreover, plants respond phenologically to herbivory
(Karban and Baldwin, 1997; Rose et al., 2005). For
example, Young et al. (1994) and Ru and Fortune (1999)
showed that increased grazing pressure delayed flowering
time. Using enclosure experiments in Mongolian grass-
lands, Fujita et al. (2002) demonstrated that the peak
e front matter r 2007 Elsevier Ltd. All rights reserved.
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flowering season in edible plants was delayed as a result of
herbivory.
Plants may respond to herbivory by prolonging periods

of vegetative growth to compensate for biomass loss during
predation. However, this is likely to depend on a variety of
conditions. For example, if herbivores only consume the
vegetative components of a plant and leave the reproduc-
tive organs intact, shortening vegetative growth may
prevent biomass loss. Therefore, to understand plant
responses to herbivory, it is necessary to understand the
schedule of biomass allocation or phenology and its
reproductive consequence. One way of doing this is to
analyze the optimal growing schedule of plants using a
mathematical approach.
The evolution of the schedule of plant biomass alloca-

tion was initially investigated theoretically by Cohen (1971,
1976), and has since been the topic of numerous reports
(King and Roughgarden, 1982a, b, 1983; Schaffer, 1983;
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Iwasa and Roughgarden, 1984; Iwasa and Cohen, 1989;
Iwasa, 1991, 2000; Yamamura and Tsuji, 1995; Iwasa et al.,
1996; Iwasa and Kubo 1997; Day and Taylor, 2000;
Yamauchi and Yamamura, 2004). These studies have used
dynamic optimization models to explain patterns of
resource allocation between tissues throughout the plant
lifecycle. However, Yamamura and Tsuji (1995), Iwasa
et al. (1996), and Yamauchi and Yamamura (2004)
conducted the only studies that have considered the effects
of continuous grazing on phenology. Yamamura and Tsuji
(1995) investigated the strategy of resource allocation for
vegetative and defensive plant parts while ignoring the
reproductive parts. Similarly, Iwasa et al. (1996) analyzed
the defense schedule of plants but failed to consider
differences in productive and reproductive components.
Yamauchi and Yamamura (2004) analyzed strategy of
resource allocation between vegetative and reproductive
parts during herbivory; however, they limited their focus to
conditions of grazing optimization, considering nutrient
dynamics in the soil. Therefore, no previous study has
clarified the effects of herbivory on resource allocation
dynamics between vegetative and reproductive parts.

Here we used the dynamic optimization method to
construct a mathematical model that allowed us to investigate
the relationship between grazing pressure and the timing of
resource allocation switching between various plant tissues.
2. Methods

2.1. General mathematical equations

We consider an annual plant species that reproduces
once at the end of the growing season. In this analysis, the
biomass of an individual plant was divided into two parts:
vegetative (V) and reproductive (R). At the start of the
season V ¼ V0 (i.e., seed size) and R ¼ 0.

The assimilation rate of a plant can be considered to be
dependent on individual photosynthetic ability, which
should increase with the size of the vegetative component
of the plant. However, photosynthetic ability may increase
more slowly than the size of the vegetative component
because a large vegetative part may be accompanied by
increased maintenance costs or lower light intensity due to
self-shading. Thus, the assimilation ability is assumed to be
either a linear or convex function of the size of the vegetative
part, g(V). The assimilated products are allocated between
the growth of vegetative and reproductive parts at a given
time. The allocation schedule is optimized to maximize the
final size of the reproductive component, R(T), where T

represents the end of the season. The resource allocation to
the reproductive components at time t is denoted by x(t),
where 0px(t)p1. Given these assumptions, the dynamics of
biomass allocation to vegetative and reproductive parts of a
plant are described by the following equations:

dR

dt
¼ xðtÞgðV Þ � hR, (1a)
dV

dt
¼ ð1� xðtÞÞgðV Þ � kV , (1b)

where h and k represent the grazing rates on the
reproductive and vegetative parts, respectively. The in-
dividual plant in question uses an x(t) that maximizes the
final size of the reproductive part, R(T). This type of
problem can be solved by Pontryagin’s maximum principle
(Pontryagin et al., 1962; see also the textbook by Kot,
2001). Based on the dynamics (1a), (1b), the Hamiltonian
formulation is

H ¼
dR

dt
þ lR

dR

dt
þ lV

dV

dt

¼ xðtÞgðV Þð1þ lR � lV Þ � ð1þ lRÞhRþ lV ðgðV Þ � kV Þ,

ð2aÞ

where lR and lV represent costate variables accompanying
reproductive and vegetative part sizes, respectively. In
Eq. (2a), the first term represents a differentiation of
objective function that should be maximized, while other
terms are differentiations of state variables that are
weighted by costate variable. It should be noted that when
the objective function coincides with one of state variable,
those are often unified into a single term (e.g. King and
Roughgarden, 1982a; Iwasa and Roughgarden, 1984),
accompanying a modification of terminal condition of the
concerned costate variable (see below). In this system,
canonical equations are as follows:

dlR

dt
¼ �

qH

qR
¼ ð1þ lRÞh, (2b)

dlV

dt
¼ �

qH

qV
¼ �xðtÞg0ðV Þð1þ lR � lV Þ � lV ðg

0ðV Þ � kÞ.

(2c)

According to the maximum principle, the dynamics of lR

and lV are constrained by conditions such that both lR(T)
and lV(T) equal zero at the end of season T because the
state variables are not constrained at the terminal time.
Given that lR(T) ¼ 0, we can use Eq. (2b) to calculate
that lR ¼ Exp[�h(T�t)]�1. By substituting this into
Eqs. (2a)–(2c), we derive:

H ¼ xðtÞgðV Þðe�hðT�tÞ � lV Þ � e�hðT�tÞhRþ lV ðgðV Þ � kV Þ.

(3a)

lR ¼ e�hðT�tÞ � 1, (3b)

dlV

dt
¼ xðtÞg0ðV ÞðlV � e�hðT�tÞÞ þ lV ðk � g0ðV ÞÞ. (3c)

The maximum principle states that the optimal resource
allocation schedule x*(t) can be derived by choosing x(t)
such that it maximizes the Hamiltonian (H) at a given time.
According to Eq. (3a), we can obtain the optimal schedule
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as follows:

x�ðtÞ ¼

0 if lV4e�hðT�tÞ;

between 0 and 1 if lV ¼ e�hðT�tÞ;

1 if lVoe�hðT�tÞ;

8><
>: (4)

When lV ¼ Exp[�h(T�t)], the trajectory of optimal
solution may be a singular control. By substituting this
into Eq. (3c), the dynamics of lV under the singular control
become

dlV

dt
¼ e�hðT�tÞðk � g0ðV ÞÞ. (5)

For tracing the singular trajectory, lV must simulta-
neously satisfy both lV ¼ Exp[�h(T�t)] and Eq. (5), giving
g0(V) ¼ k�h. This implies that the plant adopts a singular
schedule when the vegetative part reaches a certain size,
V*, at which the increasing rate of assimilation ability
against the vegetative part size [g0(V*)] coincides with the
difference in grazing rates between vegetative and repro-
ductive parts (k�h). As such, the individual plant
simultaneously allocates assimilated products to both
vegetative and reproductive parts during a certain period,
thereby maintaining the vegetative part size at V*, which is
a condition for the optimal control x*(t) on the singular
trajectory.

Using these equations and assuming that the assimila-
tion ability is a convex increasing function [g0(V)40,
g00(V)o0], we can divide the growing season into three
periods. In the first period, vegetative part size V is
sufficiently small, thereby allowing g0(V) to be large, such
that g0(V)4k. Additionally, if lV is large enough to allow
lV4Exp[�h(T�t)], the plant invests all assimilation
products into vegetative parts [x*(t) ¼ 0], resulting in a
growth increment of V [i.e., decrement of g0(V)]. When
g0(V) ¼ k�h, lV ¼ Exp[�h(T�t)] occurs simultaneously,
thus forcing the optimal control to enter into a singular
trajectory. During singular control, the plant keeps
vegetative part size at V*, meaning that assimilation
products are invested in both reproductive and vegetative
parts, thus compensating for loss of biomass due to
grazing. During this period, lV follows lV ¼ Exp[�h

(T�t)], although lV must eventually reach zero at the end
of the season [lV(T) ¼ 0]. This means that lV must leave
the singular trajectory at a given time, thereby becoming
lVoExp[�h(T�t)]. Thereafter, the plant invests all
assimilation products into reproductive parts [x*(t) ¼ 1].
During this period, the vegetative component of the plant
gradually decreases as a result of grazing pressure (VoV*),
and the dynamics of lV follow dlV=dt ¼ �g0ðV ÞExp½�h

ðT � tÞ� þ lV k from Eq. (3c).
In summary, the plant generally invests exclusively in

the vegetative component early in the season, whereas
it contributes to both vegetative and reproductive parts in
the middle of the season and only to the reproductive
part toward the end of the season. In some situations,
however, this general pattern cannot hold. For example,
when the growing season is short, or when the assimi-
lation ability of plant is relatively low, it may not be
able to reach V*, by which an intermediate period with
singular control does not take place. In such situations,
the plant allocates all of its resources to vegetative
growth early in the season and reproductive growth
later in the season. Therefore, the resource allocation
pattern of an individual suddenly changes at a given time.
In dynamic optimization this is often referred to as
‘bang–bang’ control. If grazing pressure is absent, this
type of schedule is the only option (Cohen, 1971, 1976).
This is the case in our model, because the condition for the
singular control, g0(V) ¼ k�h does not hold when
k ¼ h ¼ 0.
We have derived a general pattern of the optimal

phenology of plant resource allocation under grazing
pressure. However, this can only be calculated for an
explicit functional form of assimilation ability g(V). We
assume that g(V) equals aVb (0pbp1), where g0(V)40 and
g00(V)p0. In this case, when the plant allocates all
assimilation products to vegetative part in the absence of
herbivory, its growth coincides with von Bertalanffy
growth curve (or Richards curve with a slope of the
allometric line being smaller than 1) with which main-
tenance costs are absent or the maximum size is sufficiently
large (von Bertalanffy, 1957; Richards, 1959; Hunt, 1982).
To ensure that the vegetative growth (1b) is initially
positive we must have a4kV

1�b
0 , where V0 is the initial size

of the vegetative part.

2.2. Non-linear g(V), 0pbo1

First, we consider a case, where the assimilation ability
g(V) is a non-linear function of vegetative part size (bo1).
If the optimal phenology involves singular control (see
Appendix A), we can denote the times for changing
resource allocation patterns as

t1 ¼
1

kð1� bÞ
ln
ðk � hÞða� kV

1�b
0 Þ

afkð1� bÞ � hg

" #
(6a)

and

t2 ¼ T �
1

kb� h
ln

k � h

kð1� bÞ

� �
. (6b)

The plant invests assimilation products exclusively
in vegetative parts when 0otot1, whereas it invests
in both vegetative and reproductive parts when t1otot2,
and solely in reproductive parts when t2otoT.
Conversely, when t1 and t2 are such that t14t2, there
is no possibility of singular control. In such cases, the
optimal phenology is bang–bang control, in which the
plant invests in vegetative components in the earlier season
and then switches to reproductive components toward the
end of the season. That is, the plant never invests
simultaneously in both vegetative and reproductive parts.
As described in the Appendix A, the optimal switching time
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Fig. 1. Optimal phenologies with respect to (a) season length, T,

(b) coefficient of vegetative part size in the assimilation function, a, and
(c) the order of vegetative part size in the assimilation function, b. Basic
parameters are h ¼ 0.02, k ¼ 0.2, a ¼ 1, b ¼ 0.8, T ¼ 120, and V0 ¼ 0.1.
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tb is a solution of

a

a� kV
1�b
0

ekð1�bÞtb � 1

 !
h

kb

�
a

a� kV
1�b
0

eðk�hÞtb�ðkb�hÞT þ 1 ¼ 0. ð7aÞ

This equation can be explicitly solved for two special
cases. First, if the reproductive part of the plant is not
grazed (i.e., h ¼ 0), the optimal switching time of resource
allocation is

tb ¼ bT �
1

k
ln

a

a� kV
1�b
0

" #
. (7b)

This is a decreasing function of k because a4kV
1�b
0 . On

the other hand, when grazing pressure is identical between
reproductive and vegetative parts (h ¼ k), the optimal
switching time can be calculated as

tb ¼
1

kð1� bÞ

� ln
a� kV

1�b
0

a
b

a

a� kV
1�b
0

ekð1�bÞT � 1

 !
þ 1

( )" #
.

ð7cÞ

2.3. Linear g(V), b ¼ 1

When g(V) is a linear function of vegetative part size and
b ¼ 1, the singular solution cannot occur because Eq. (6a)
diverges. Thus, the optimal phenology always follows the
bang–bang control. By substituting b ¼ 1 into Eq. (7a), the
optimal time for switching resource allocation is calculated
as follows:

tb ¼ T �
1

k � h
ln

a
a� ðk � hÞ

� �
. (8)

In the limit of k ¼ h, tb is defined as T�1/a. This is a
well-known formula for calculating the time of resource
allocation switching in the case of a linear growth function
(Cohen, 1976).

3. Results

Using the above equations, we can examine the
parameter dependence of optimal phenology. Fig. 1
illustrates the dependence on seasonal length (T) as well
as on the coefficient of vegetative part size in the
assimilation function (a), and on the order of vegetative
part size in the assimilation function (b). Fig. 1a shows that
as the length of the growing season increases, the optimal
schedule is more likely to involve singular control. Fig. 1b
shows that for any a value, the phenology always includes
singular control, although this is dependent on other
parameter values. The supplemental calculations illustrate
that additional parameter sets may result in the disap-
pearance of singular control at a high a. Accordingly,
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depending on conditions, the optimal schedule of resource
allocation tends to include singular control with a lower
coefficient of vegetative part size a. Fig. 1c indicates that
the optimal schedule tends to involve singular control with
the decreasing order of vegetative part size b.

In Fig. 1b, the gray areas indicate impracticable
parameters. Two such cases are possible. The first is
represented by the dark gray region (smaller a), which
corresponds to situations where the plant cannot grow at
all. The second, indicated by the light gray region (larger
a), represents situations where the initial size of the
vegetative part (i.e., V0 immediately after germination) is
larger than that for singular control V*. In such cases, the
plant initially invests all of its resources toward the growth
of the reproductive parts, thus resulting in the reduction of
the vegetative parts via herbivory. When the size of
vegetative part reaches V*, the plant begins to follow a
singular trajectory with simultaneous investment in both
vegetative and reproductive parts. At the end of the season,
the plant again invests all resources in reproductive growth.
This means that the plant has two peaks of reproductive
activity during a single season, once immediately after
germination and again at the end of season. Given that this
is highly unrealistic, we conclude that this schedule is
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Fig. 2. Dependence of the optimal phenology in the non-linear model on

grazing rates on (a) reproductive parts, and (b) vegetative parts. Basic

parameters are h ¼ 0.02, k ¼ 0.2, a ¼ 1, b ¼ 0.8, T ¼ 120, and V0 ¼ 0.1.
unfeasible and have therefore excluded it from the optimal
schedule illustrated in Fig. 1b.
Fig. 2 shows that the optimal phenology is dependent on

the grazing pressures on (a) reproductive parts and (b)
vegetative parts for a non-linear model (bo1). A singular
solution period tends to occur when the herbivory of
vegetative parts is relatively high compared to that of
reproductive parts. Fig. 3 illustrates the dependency of the
schedule of resource allocation on grazing pressure in a
linear model (b ¼ 1), in which case the optimal phenology
always follows bang–bang control without a singular
solution period. The switching time tb is an increasing
function of h and a decreasing function of k.

4. Discussion

It is well documented that plant species demonstrate
altered growing schedules in response to herbivory. For
example, Young et al. (1994) and Ru and Fortune (1999)
reported that some plant species delayed flowering as
herbivory increased. Fujita et al. (2002) showed that
increased grazing pressure delayed the peak flowering
season of edible plant species in Mongolian grasslands.
These studies were conducted by artificially controlling
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Fig. 3. Dependence of the optimal phenology in the linear model on

grazing rate on (a) reproductive parts and (b) vegetative parts. Basic

parameters are h ¼ 0.02, k ¼ 0.2, a ¼ 0.2, b ¼ 1, T ¼ 120 and V0 ¼ 0.1.
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herbivory conditions using techniques such as enclosure
experiments. However, the responses of plants to novel
conditions were measured over experimental periods that
were far too short to observe evolutionary responses.
Therefore, the observed changes in flowering season could
be a result of phenotypic plasticity, which may have been
selected for depending on the cost of the plasticity and
reliability of the environmental cues (Scheiner, 1993;
Moran, 1992; DeWitt et al., 1998; Tufto, 2000). Here we
have focused on the evolution of phenology under selection
pressure resulting from herbivory. However, our model can
also be applied toward adaptive phenotypic plasticity.
Grazing pressure at the earlier season can be a reliable cue
for plants so as to plastically alter its phenology for the
following season. Thus, it is possible that the changes in
flowering time observed in previous experiments can be
explained by our model system.

Our model initially focuses on a linear situation, where the
assimilation ability is a linear function of vegetative part size
(i.e., b ¼ 1). In this case, the optimal phenology is always a
bang–bang schedule, whereby resource allocation completely
switches from an investment solely in vegetative growth to
that of reproductive growth at time tb. The analysis shows
that the flowering time (tb) increases with increasing grazing
intensity on the reproductive parts (h), but decreases with the
herbivory of vegetative parts (k) (Fig. 3).

In the non-linear model, the assimilation ability is a
convex function of vegetative part size (i.e., bo1). In this
case, both bang–bang and singular controls are possible.
When the optimal phenology follows a bang–bang
schedule, tb increases as both grazing on reproductive
parts (h) and on vegetative parts (k) increases (right and left
halves of Fig. 2a and b, respectively). Conversely, when the
optimal phenology involves singular control, the timing of
the switch (t1) from the exclusive investment in vegetative
growth to simultaneous investment in both vegetative and
reproductive growth is prolonged with increasing h and
decreasing k (left and right halves of Fig. 2a and b,
respectively). Additionally, t2, or the timing of the switch
from simultaneous investment to exclusive investment in
reproductive growth, increases with decreasing h and
increasing k (left and right halves of Fig. 2a and b,
respectively). If we focus on a timing of initiation of
exclusive investment toward reproduction (i.e., tb or t2),
this timing is delayed with the increment of grazing on
vegetative parts (k) in both the bang–bang and singular
control cases.

In the linear model, the flowering time (tb) was moved
forward when grazing focused on vegetative components of
the plant. However, the peak was delayed under identical
conditions in the non-linear model, if we define the peak of
the flowering season as notable blooming resulting from
the exclusive investment in the reproductive components of
the plant (i.e., tb or t2). Therefore, the peak of the flowering
season changed in response to grazing intensity, depending
on the functional form of assimilation ability to vegetative
part size. Accordingly, our results suggest that the
assimilation rate g(V) is a non-linear function of vegetative
part size V in plants that were observed the delay of
flowering when herbivory increased. However, if plants
have experienced only a small variation of grazing pressure
during evolutionary period, they could not evolve ability
for adaptive response to significant change of grazing
pressure. Accordingly, the adaptive phenotypic plasticity
should be considered, taking account of a range of
variation of grazing pressure during evolutionary time
scale.
We considered an annual plant species, where a criterion

of plant performance is a size of reproductive part at the
end of season. If reproductive part is not grazed (h ¼ 0), all
investments for reproductive part at each moment are
accumulated without loss until the terminal time. The same
concept may be applicable on perennial plants, in which
investment for reproductive part at each moment (year) is
immediately exchanged to reproductive output, by evalu-
ating plant performance as the summation of those
reproductions. Tree species are typical perennial plants,
where their growths often become very slow or almost stop
when they reach the mature size. Such a growth pattern
could be considered from two viewpoints; (1) a game for
light in the presence of cost for height (Iwasa et al., 1985),
and (2) the optimal phenology under herbivory (the
presented model). Basically, both are based on balancing
between cost and benefit accompanied by plant height. The
former considers interactions among individuals, resulting
in taller height so as to dominate in competition for light.
On the other hand, the latter includes effect of the terminal
time, predicting more significant reproduction at older
stage near the terminal time. In real nature, both factors
may be important determinants of tree life-histories.
Yamauchi and Yamamura (2004) analyzed conditions

for grazing optimization using the dynamic optimization
method. They considered the dynamics of vegetative and
reproductive part sizes of individual plants as well as
nutrient concentrations in the soil, thereby revealing the
conditions under which grazing pressure promotes plant
performance as a result of herbivore-driven nutrient cycle
mediation. They concluded that the optimal plant phenol-
ogy will always follow a bang–bang control, even in the
presence of grazing pressure. Our model, however, predicts
otherwise. Optimal plant phenology possibly follows
singular control, depending on the given conditions.
Fortunately, in their numerical analysis, the singular
control never appears under the chosen parameters,
implying that their results were correct at least under the
given settings. Future studies should therefore expand on
their model by addressing the possibility of singular
schedules of resource allocation, clarifying general condi-
tions for grazing optimization driven by nutrient cycling.
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Appendix A. Optimal phenology with g(V) ¼ aVb

A.1. Case 1: The solution including singular control

Assuming that g(V) ¼ aVb, we can calculate that V� ¼

fab=ðk � hÞg1=ð1�bÞ from g0(V*) ¼ k�h, which is the size of
the vegetative part under singular control.

First, we determine t1, the starting time of the second
period, after which both vegetative and reproductive parts
grow. In the first period, the plant grows vegetative parts
only between V0 to V* [x*(t) ¼ 0], following

dV

dt
¼ gðV Þ � kV ¼ aVb � kV (A.1)

from Eq. (1b). Eq. (A.1) can be solved as

V1�b ¼
1

k
fa� ða� kV

1�b
0 Þe

�kð1�bÞtg, (A.2a)

therefore,

t ¼
1

kð1� bÞ
ln

a� kV
1�b
0

a� kV 1�b

" #
, (A.2b)

representing a period for growth from V0 to V. By
substituting V ¼ V� ¼ fab=ðk � hÞg1=ð1�bÞ into Eq. (A.2b),
we can obtain the starting time of the second period, within
which both vegetative and reproductive parts grow, as
follows:

t1 ¼
1

kð1� bÞ
ln

a� kV
1�b
0

af1� bk=ðk � hÞg

" #
. (A.3)

Next, we determine the starting time of the third period,
t2, after which only reproductive part grows. In this period,
x(t) ¼ 1 and vegetative part size reduces by grazing as
follows:

dV

dt
¼ �kV , (A.4)

from V� ¼ fab=ðk � hÞg1=ð1�bÞ. Eq. (A.4) shows that V ¼

fab=ðk � hÞg1=ð1�bÞ Exp½�kðt� t2Þ� within the third period.
Conversely, in this period lV must eventually reach zero,
following the dynamics

dlV

dt
¼ � g0ðV Þe�hðT�tÞ þ lV k ¼ �abVb�1e�hðT�tÞ þ lV k

¼ � ðk � hÞefkð1�bÞþhgt�kð1�bÞt2�hT þ klV . ðA:5Þ

Since lV ¼ Exp[�h(T�t)] in the singular solution,
lV ¼ Exp[�h(T�t2)] at t ¼ t2. Accordingly, Eq. (A.5) can
be solved as

lV ¼ 1�
k � h

bk � h
ð1� e�ðkb�hÞðt�t2ÞÞ

� �
e�hðT�t2Þþkðt�t2Þ.

(A.6)

Since lV must equal zero at t ¼ T, Eq. (A.6) can be
rewritten as

t2 ¼ T �
1

kb� h
ln

k � h

kð1� bÞ

� �
. (A.7)

A.2. Case 2: The solution being ‘bang–bang’ control

If the optimal phenology is a bang–bang control, the
resource allocation pattern completely switches from
vegetative growth to reproductive growth at a given time,
tb. When 0ototb, all assimilation products are invested in
vegetative parts, and growth dynamics are as follows:

dV

dt
¼ gðV Þ � kV ¼ aVb � kV . (A.8)

Accordingly, vegetative part size at t ¼ tb is

V tb
¼

a
k
�

a
k
� V

1�b
0

� �
e�kð1�bÞtb

n o1=1�b
. (A.9)

Conversely, when tbotoT, all assimilation products are
invested in reproductive parts, during which time growth
dynamics are such that

dR

dt
¼ gðV Þ � hR ¼ aVb � hR, (A.10a)

dV

dt
¼ �kV . (A.10b)

From Eq. (A.10b), we can calculate vegetative part size
after tb as V ¼ V tb

Exp½�kðt� tbÞ�. Thus, based on
Eq. (A.10a), reproductive part size at the end of the
season is

RðTÞ ¼
a

kb� h

a
k
�

a
k
� V

1�b
0

� �
e�kð1�bÞtb

n ob=1�b

�ðe�hðT�tbÞ � e�kbðT�tbÞÞ. ðA:11Þ

The optimal switching time maximizes Eq. (A.11). Solving
@R(T)/@tb ¼ 0, the optimal tb must satisfy

a

a� kV
1�b
0

ekð1�bÞtb � 1

 !
h

kb

�
a

a� kV
1�b
0

eðk�hÞtb�ðkb�hÞT þ 1 ¼ 0. ðA:12Þ
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