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Abstract Intraguild predation (IGP) occurs when one
species preys on a competitor species that shares a
common resource. Modifying a prey–predator model
with prey infection, we propose a model of IG interac-
tions among host, parasitoid, and predator, in which the
predator eats parasitized and unparasitized hosts, and
the adult parasitoid density is explicitly expressed.
Parameter dependences of community structure,
including stability of the system, were analytically ob-
tained. Depending on interaction strength (parasitiza-
tion and predation on unparasitized and parasitized
hosts), the model provides six types of community
structure: (1) only the host exists, (2) the host and
predator coexist stably, (3) the host and parasitoid
coexist stably, (4) the host–parasitoid population
dynamics are unstable, (5) the three species coexist sta-
bly, and (6) the population dynamics of the three species
are unstable. In contrast to a traditional prey–predator
model with prey infection, which predicts that popula-
tion dynamics are always locally stable, our model pre-
dicts that they are unstable when the parasitization rate
is high.

Keywords Aphid Æ Parasitoid wasp Æ Ladybird beetle
system Æ Competitive exclusion Æ Insect community Æ
Omnivory Æ Stage-structure

Introduction

Intraguild predation (IGP) is predation by one com-
petitor species on another that shares a common

resource. This type of interaction is widespread in nature
(Arim and Marquet 2004). However, IGP has only re-
cently become the subject of substantial empirical and
theoretical research (Polis et al. 1989; Polis and Holt
1992; Holt and Polis 1997; McCann and Hastings 1997;
Diehl 2003).

Here, we propose a model for IG interactions
among host, parasitoid, and predator (Fig. 1a), as
exemplified by the aphid, parasitoid wasp, and lady-
bird beetle system (Brodeur and Rosenheim 2000;
Meyhöfer and Hindayana 2000; Wimp and Whitham
2001; Kaneko 2002, 2003a, b; Schmidt et al. 2003). In
this system, the parasitoid (IG prey) lays eggs in the
host, the predator (IG predator) consumes both un-
parasitized and parasitized hosts, and the parasitoid
emerges from parasitized hosts that survive predation.
This interaction constitutes IGP because the predator
preys on the parasitoid by consuming parasitized
hosts.

A number of models of prey–predator interactions
with prey infection (Fig. 1b) have recently been pro-
posed (Mukherjee 1998; Chattopadhyay and Arino
1999; Lenbury et al. 1999; Han and Ma 2001; Xiao and
Chen 2001; Chattopadhyay and Pal 2002; Chattopad-
hyay et al. 2002, 2003; Hethcote et al. 2004; Singh et al.
2004; Hall et al. 2005). Traditional models have assumed
that the IG prey is a parasitic species, such as a virus or
parasite that spreads through direct contact between
susceptible and infected prey, rather than a parasitoid
with an independent adult phase. These traditional
models may thus be misleading when applied to inter-
actions among host, parasitoid, and predator, because
adult parasitoids are usually not attacked by the pred-
ator, and IG prey variables are not explicitly repre-
sented.

Mylius et al. (2001) presented a useful model frame-
work to address this problem. They developed a stage-
structured IGP model for resource, consumer (IG prey),
and predator (IG predator) interactions in which the
adult consumer is invulnerable to predation. This model
framework appears similar to the system of host, para-
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sitoid, and predator, but differs in that juvenile con-
sumers attack the resource and produce offspring,
whereas in our system, juvenile parasitoids (in the host)
do not.

Thus, we propose a model for IGP in host–parasit-
oid–predator systems (Fig. 1a) in which the adult para-
sitoid density is explicitly expressed and the
parasitization rate depends on parasitoid density. Be-
cause of the incorporation of these variables, our model
is necessarily more complex than previous models
(compare Fig. 1a and b). The purpose of our study was
to analyze this model to determine how it differs from
traditional models (Fig.1b).

Our model predicts various types of community
structure depending on the parameter values. IGP can
cause complex population dynamics, even when the
community structure is very simple (Diehl 1995; Holt
and Polis 1997). The relative strengths of direct and
indirect interactions may strongly affect population
dynamics (Bradley 1983; Polis et al. 1989). Conse-
quently, we focused on the strengths of interactions
(parasitization and predation), and examined the
relationship between interaction strength and commu-
nity structure. Finally, we compared the relationships
obtained between interaction strength and community
structure using two models (shown in Fig. 1) and
discuss the differences between prey–predator models
with prey infection and the host–parasitoid–predator
model.

Host–parasitoid–predator model

Equations and equilibria

We developed the following differential model for IG
interactions among host, parasitoid, and predator:

dSðtÞ
dt
¼ rð1� SðtÞ

K
ÞSðtÞ � xSðtÞIðtÞ � ySðtÞQðtÞ;

dIðtÞ
dt
¼ xSðtÞP ðtÞ � hIðtÞ � zIðtÞQðtÞ;

dPðtÞ
dt
¼ khIðtÞ � dpPðtÞ;

dQðtÞ
dt
¼ d ySðtÞ þ zIðtÞf gQðtÞ � dqQðtÞ; ð1Þ

where S, I, P, and Q are the densities of the unparasi-
tized host, the parasitized host, the parasitoid, and the
predator, respectively, and r and K are the intrinsic
growth rate and carrying capacity, respectively, of the
host. We assumed that the host is killed by parasitiza-
tion, but the parasitized host exists until a predator
consumes it or the parasitoid emerges. Thus, the para-
sitized host does not affect intra-species competition or
contribute to reproduction. This type of parasitoid is
called an idiobiont. Parameters x, y, and z represent the
efficiencies of parasitization, predation on the unpara-
sitized host, and predation on the parasitized host,
respectively. Parameter h is the emergence rate of the
parasitoid, and the inverse (1/h) indicates the average
latent period during which the parasitoid remains within
the host until emergence. Parameter k is the number of
parasitoids that emerge from an individual host, and d is
the conversion rate for predator reproduction. Here, we
set the conversion rates to be the same whether the
predator consumes the unparasitized or parasitized host.
Finally, dp and dq are the mortality rates of the para-
sitoid and predator, respectively (see Table 1 for a
summary of these parameters).

In general, delay-differential equations have been
used for host–parasitoid models to consider explicitly
the duration of the juvenile parasitoid stage (reviewed by
Nisbet 1997; Murdoch et al. 2003). However, we used an

Fig. 1 Geometry of the
interactions among a host,
parasitoid, and predator and
b prey and predator with prey
infection
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ordinary differential model that is the simplest standard
assumption for different transient stages in epidemiology
studies (Anderson and May 1992; Middelboe 2000),
assuming the transient rate is constant. Consequently,
this assumption facilitates analysis of the model and
comparison with traditional prey–predator models with
prey infection.

This model has four types of equilibria: E1(S1*, 0, 0,
0), E2(S2*, 0, 0, Q2*), E3(S2*, I3*, P3*, 0) and E4(S4*,
I4*, P4*, Q4*), where variables with asterisks are posi-
tive. At E1, only the host exists and both of its enemies
are excluded. At E2 or E3, the parasitoid or predator is
excluded, and the host coexists with the remaining en-
emy. At E4, the three species coexist. The equilibrium
densities are calculated as follows:

E1ðS�1 ; 0; 0; 0Þ ¼ K; 0; 0; 0ð Þ; ð2aÞ

E2ðS�2 ; 0; 0; Q�2Þ ¼
dq
yd
; 0; 0;

r
Ky

K � S�2
� �� �

ð2bÞ

E3ðS�3 ; I�3 ; P �3 ; 0Þ

¼ dp
xk
;

r
Kh

S�3 K � S�3
� �

;
hk
dp

I�3 ; 0

� �
; ð2cÞ

and

E4ðS�4 ; I�4 ; P �4 ;Q�4Þ ¼
�

K 1� hy
rzS�3

S�2 � S�3
� �� �

;

y
z

S�2 � S�4
� �

;
hk
dp

I�4 ;
h

zS�3
S�4 � S�3
� ��

:

ð2dÞ

Existence and local stability of equilibria

We examined conditions under which each equilibrium
exists and is locally stable (see Appendix A for analyses).
For E1 to be locally stable,

y\
dq
Kd

; ð3aÞ

and

x\
dp
Kk

: ð3bÞ

Thus, when inequalities 3a and b are both satisfied, E1,
in which only the host is present, is stable; otherwise, this
equilibrium is unstable.

For E2 to be stable,

y >
dq
Kd

; ð4aÞ

and

z >
Khy dqkx� dpdy

� �

rdp Kdy � dq
� � : ð4bÞ

When inequalities 4a and b are satisfied, E2, in which the
parasitoid is excluded and the host and predator coexist,
is stable.

For E3 to be stable,

z\
Khkx dqkx� dpdy

� �

rdpd Kkx� dp
� � ; ð5aÞ

x >
dp
Kk

ð5bÞ

and

x\
X þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X 2 þ 4rhdp dp þ h

� �q

2Khk
; ð5cÞ

where X=(dp+h)2+dph. When inequalities 5a–c are
satisfied, E3, in which the predator is excluded and the
host and parasitoid coexist, is stable. When Eq. 5a and b
are satisfied but Eq. 5c is not, the equilibrium with only
the host and parasitoid present is unstable.

For E4 to be stable,

dp
xk

\
dq
yd
; ð6aÞ

rdp Kdy � dq
� �

Khy dqkx� dpdy
� �\

1

z
\

rdpd Kkx� dp
� �

Khkx dqkx� dpdy
� � ; ð6bÞ

and

a1a2a3 � a2
3 � a2

1a4 > 0; ð6cÞ

where ai (i=1–4) is shown in Eq. 16a–d (Appendix A).
Inequality 6c is very complex to express directly using
the original parameters, but can be expressed using
Eqs. 2a–d and 16a–d to give the condition under which
E4 is locally stable. When 6a and b are satisfied, but 6c is

Table 1 The host–parasitoid–predator model

Symbol Definition

Populations S (t) Density of unparasitized host at time t
I (t) Density of parasitized host at time t
P (t) Density of parasitoid at time t
Q (t) Density of predator at time t

Parameters r Intrinsic growth rate of host
K Carrying capacity of host
x Parasitization rate
y Predation rate on unparasitized host
z Predation rate on parasitized host
h Emergence rate of parasitoid
k Number of parasitoids from

individual host
d Conversion rate for predator

reproduction
dp Mortality rate of parasitoid
dq Mortality rate of predator

Equilibria E1 Host
E2 Host and parasitoid
E3 Host and predator
E4 Host, parasitoid, and predator

Regions I E1 is stable
II E2 is stable
III E3 is stable
IV E4 is stable
iii E3 is unstable
iv E4 is unstable
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not, the equilibrium in which the three species are
present is unstable.

Relationships between interaction strength
and community structure

From inequalities 3a, b to 6a–c, we obtained the rela-
tionship between interaction strength and community

structure and represented the numerically calculated
results in parameter space (Fig. 2). Referring to Holt
and Polis (1997), we set the default parameters as r=1,
K=1, h=1, k=1, d=0.5, dp=0.5, and dq=0.5. After
analysis of the model using this default parameter set, we
examined how the results changed with alteration of the
parameter values. In each panel of Fig. 2, the horizontal
and vertical axes represent the parasitization rate (x) and
the predation rate on the unparasitized host (y) for
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Fig. 2a–f Relationship between
interaction strength
(parasitization rate x and
predation rate on the
unparasitized host y) and
community structure for
various strengths of predation
on the parasitized host (z).
a z=0, b z=2, c z=4, d z=6,
e z=8, and f z=10. In each
panel, the horizontal and
vertical axes represent the
parasitization rate (x) and the
predation rate on the
unparasitized host (y),
respectively. In region I, only
the host persists. In regions II
and III, the predator or the
parasitoid coexists with the host
in a stable equilibrium. In
region iii, the population
dynamics between the host and
parasitoid are unstable. In
region IV, the three species
coexist in a stable equilibrium.
In region iv, the population
dynamics among the three
species are unstable
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various rates of predation on the parasitized host (z).
The parameter space is divided into six mutually exclu-
sive regions (I–IV, iii, and iv) depending on interaction
strength.

E1 is locally stable in region I within an area where
both the parasitization rate (x) and the predation rate on
the unparasitized host (y) are low, i.e., the conditions
described by inequalities 3a, b. In this region, when both
enemies are inefficient in exploiting the host, they are
both excluded and only the host exists.

E2 is locally stable in region II, where the parasiti-
zation rate (x) is low and the predation rates on both the
unparasitized host (y) and parasitized host (z) are high,
i.e., the conditions described by 4a, b. In this region,
when the predator is more efficient than the parasitoid,
the parasitoid is excluded and the host and predator
coexist.

E3 is locally stable in region III, where the parasiti-
zation rate (x) is moderate and the predation rates on
both the unparasitized host (y) and parasitized host (z)
are low, i.e., the conditions described by 5a–c. In this
region, when the parasitoid is moderately more efficient
than the predator, the predator is excluded and the host
and parasitoid coexist. When the parasitization rate (x)
is too high and inequality 5c does not apply, E3 becomes
unstable and the system shifts into region iii. In this
region, a host–parasitoid limit cycle occurs (Fig. 3a).
Region iii also narrows as the predation rate on the
parasitized host (z) increases.

E4 is locally stable in region IV, where the parasiti-
zation rate (x) is moderate, the predation rate on the
unparasitized host (y) is low, and the predation rate on
the parasitized host (z) is high, i.e., the conditions de-

scribed by 6a–c. In this region, the parasitoid uses the
host moderately, and the predator attacks the parasit-
ized host more efficiently than it attacks the unparasi-
tized host. From a different viewpoint, if the predation
rate on the parasitized host (z) is assumed to represent
the IGP level, the model suggests that the three species
are more likely to coexist when the IGP level is higher,
and the three species do not coexist when z=0. When
the parasitization rate (x) is slightly higher and
inequality 6c no longer applies, E4 becomes unstable and
the system shifts into region iv. In this region, a three-
species limit cycle occurs (Fig. 3b). Region IV is sand-
wiched between two divided portions of region III when
y is low and z is moderate (Fig. 2c and d), i.e., when the
predator population is sustained by depending mainly
on the parasitized host. In this situation, the predator is
excluded from coexistence with the other species as the
parasitization rate (x) increases, and the system shifts to
the right, from region IV into region III, by competitive
exclusion. In contrast, the predator is excluded as the
parasitization rate (x) decreases, shifting the system to
the left, from region IV into region III, because the
predator is pushed to extinction owing to a shortage of
the resource, the parasitized host.

We conducted numerical calculations to test global
stability, varying the initial population densities. When
the equilibria are locally stable in regions I, II, III, and
IV, they are always globally stable; when the equilibria
are unstable in regions iii and iv, the densities do not
change chaotically, but approach limit cycles (Fig. 3).
Because all regions are mutually exclusive, there were no
cases in which more than two attractors coexisted.

Parameter effects

In this section, we briefly describe the parameter effects
on boundary conditions in Eqs. 3a, b to 6a–6c (see
Appendix B for details). We obtained the natural results
that the parasitoid is better at invading the host popu-
lation (3b) or the host–predator system (4b) when it
performs well (high growth rate or low mortality rate).
Similar results were obtained for the predator (3a and
5a).

Resource condition has opposite effects on the inva-
sibility of the parasitoid or predator into the systems of
the host and the other enemy. The predator is more
likely to invade the host–parasitoid system with an in-
crease in host-carrying capacity (K) (5a), but the para-
sitoid is less likely to invade the host–predator system
under this condition (4b). This result suggests that the
three species are most likely to coexist at an intermediate
level of productivity. This pattern was also suggested in
previous studies of the IGP model (Holt and Polis 1997;
Mylius et al. 2001).

The host–parasitoid system is more likely to be
unstable when the parasitoid performs well (high growth
rate or low mortality rate) (5c). Inequality 6c represents
the boundary between regions IV and iv, i.e., the

D
en

si
ty

D
en

si
ty

1.0

0.8

0.6

0.4

0.2

0.0

t

t

1.0

0.8

0.6

0.4

0.2

0.0

b

a

Fig. 3 Limit cycles of a the host and parasitoid in region iii and
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required condition for stability of the three-species sys-
tem. Shifts in this boundary are difficult to predict be-
cause of the complexity of this inequality. However, this
boundary would be expected to have shifts almost par-
allel to those between regions iii and iv because region iv
is usually very narrow.

Prey–predator model with prey infection

In model 1, the parasitization rate depends on adult
parasitoid density. We changed this assumption to rep-
resent a contagion process, which is the assumption in
traditional prey–predator models with prey infection
(Fig. 1b). Replacing xS(t) P(t) in model (1) with
xS(t) I(t) and omitting the variable P(t), we obtain the
following equations:

dSðtÞ
dt
¼ rð1� SðtÞ

K
ÞSðtÞ � xSðtÞIðtÞ � ySðtÞQðtÞ;

dIðtÞ
dt
¼ xSðtÞIðtÞ � hIðtÞ � zIðtÞQðtÞ;

dQðtÞ
dt
¼ d ySðtÞ þ zIðtÞf gQðtÞ � dqQðtÞ:

ð7Þ

This model framework is the same as that of the IGP
model proposed by Holt and Polis (1997). Here, we
present results obtained from our model 1 compared to
results from the traditional model 7. In model 7, S, I, and
Q are the densities of susceptible prey, infected prey, and
the predator, respectively. Parameters x, y, and z repre-
sent the efficiencies of infection, predation on susceptible
prey, and predation on infected prey, respectively.
Parameter h corresponds to the mortality rate caused by
infection in the traditional model, whereas it corresponds
to the emergence rate of the parasitoid in our model 1. In
both cases, it represents loss rate I(t) by causes other than
predation. The other parameters are defined as in our
model, described by model 1. In model 7, the variables of
the actual IG prey, which is a virus or parasite, are not
explicitly expressed for simplicity. The assumption here is
that the IG prey diffuses through contagion, and the
infection rate depends on the infected prey density.

Model 7 also has four types of equilibria: E1(S1*, 0,
0), E2(S2*, 0, Q2*), E3(S2*, I3*, 0), and E4(S4*, I4*, Q4*).
Their equilibrium densities are as follows:

E1ðS�1 ; 0; 0Þ ¼ ðK; 0; 0Þ; ð8aÞ

E2ðS�2 ; 0; Q�2Þ ¼
dq
yd
; 0;

r
Ky

K � S�2
� �� �

; ð8bÞ

E3 S�3 ; I�3 ; 0
� �

¼ h
x
;

r
Kx

K � S�3
� �

; 0

� �
; ð8cÞ

and

E4ðS�4 ; I�4 ; Q�4Þ ¼
�

K 1� xy
rz

S�2 � S�3
� �n o

;

y
z

S�2 � S�4
� �

;
x
z

S�4 � S�3
� ��

: ð8dÞ

Using the same analytical process as that applied to
our model 1, we obtained the following required con-
ditions for equilibria E1–E4 to be locally stable:

x\
h
K

and y\
dq
Kd

; ð9aÞ

y >
dq
Kd

and z >
Ky dqx� hdy
� �

r Kdy � dq
� � ; ð9bÞ

x >
h
K

and z\
Kx dqx� hdy
� �

rd Kx� hð Þ ; ð9cÞ

and

h
x
\

dq
yd

and
r Kdy � dq
� �

Ky dqx� hdy
� �\

1

z
\

rd Kx� hð Þ
Kx dqx� hdy
� � : ð9dÞ

From the above conditions and using the default
parameter values, we calculated the relationships be-
tween interaction strength and community structure
(Fig. 4). For surviving species, the resulting pattern of
community structure is similar to that obtained using
our model 1: the prey exists alone without infection
when both infection and predation rates are low (re-
gion I); the prey and predator coexist stably without
infection when the predation rate is high and the
infection rate is low (region II); the prey exists alone
with infection when the infection rate is high and the
predation rate is low (region III); and the prey and
predator coexist stably with infection when the infec-
tion rate is moderate and the predation rate of sus-
ceptible prey is low and that of infected prey is high
(region IV).

However, the two models differ in their predictions
of stability, particularly in the parameter space where
the infection rate is high. The traditional model
indicates locally stable equilibria in regions III and IV,
whereas our model indicates the existence of host–
parasitoid or three-species limit cycles in regions iii
and iv (Figs. 2 and 4). This difference is apparently
attributable to time-delayed interactions between
the host and parasitoid that are incorporated into
our model, but are absent from the traditional
model 7.

Discussion

We proposed and analyzed a model for IG interactions
among a host, a parasitoid, and a predator (Fig. 1a), as
exemplified by the aphid, parasitoid wasp, and ladybird
beetle system (Brodeur and Rosenheim 2000; Meyhöfer
and Hindayana 2000; Wimp and Whitham 2001;
Kaneko 2002, 2003a, b; Schmidt et al. 2003). In this
system, the parasitoid lays eggs in the host, the predator
attacks both the unparasitized and parasitized hosts,
and the parasitoid emerges from parasitized hosts that
survive predation. This model may also be applied to
aquatic ecosystems in which viruses suspended in the
water are analogous to parasitoids in insect communities
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(Suttle and Chen 1992; González and Suttle 1993;
Manage et al. 2002).

Our model predicted six types of population dynamics
depending on the strength of species interactions (Fig. 2).
Viewing these predicted patterns should be useful when
examining communities in which three interaction

strengths are dependent on several variables. For exam-
ple, the community structure of the system composed of
aphids, parasitoid wasps, and ladybird beetles varies
depending on the existence and activity of ants that have
a mutualistic relationship with aphids (Wimp and
Whitham 2001; Kaneko 2002, 2003a, b). For example,

a b

dc

e f

Fig. 4a–f Relationship between interaction strength (infection rate
x and predation rate on the susceptible prey y) and community
structure for various strengths of predation on the infected prey.
a z=0, b z=2, c z=4, d z=6, e z=8, and f z=10. In regions I

and II, the prey exists alone or coexists stably with the predator
without prey infection. In regions III and IV, the prey exists alone
or coexists stably with the predator with prey infection
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when (x, y, z)=(4, 2, 8), our model predicts that the three
species will coexist stably (Fig. 2e). However, if the pre-
dation rate decreases because of a certain factor, such as
ant attendance, and (x, y, z)=(4, 1, 4), an unstable host–
parasitoid system results (Fig. 2c).

Many researchers have used prey–predator models
with prey infection when considering IGP systems in
which the IG prey is a parasitic species (Fig. 1b). In the
traditional models, the density of IG prey was not di-
rectly represented because of the assumption that
infection is caused by contagion between susceptible
and infected prey. Consequently, these models are less
complex and easier to manipulate than our model. The
traditional model is certainly appropriate for analysis
of IGP systems in which a parasitic IG prey diffuses
through contagion, but may not be optimal for analysis
of IGP interactions among host, parasitoid, and pred-
ator. Our results confirm that the two models are
qualitatively similar in that the community structure
depends on the three interaction strengths, and both
models indicate that the coexistence of the three species
is influenced by IG interactions. This is contrary to our
expectation that the community structure pattern
would drastically change with additional stage struc-
ture. However, the two models differ substantially in
that the traditional model predicts the existence of
stable equilibria in the parameter spaces where limit
cycles are predicted by our model (Fig. 3). When pre-
dicting population dynamics in practical applications,
this quantitative difference is crucial, even if the two
models predict the same species composition under a
given condition. Therefore, it is important to distin-
guish between the applicability of the two models,
depending on whether the infection process is parasit-
ization or contagion.

The difference between our model and the traditional
prey–predator model with prey infection is attributable
to a consideration of the stage structure of the parasitoid;
parasitoids have both a free-living adult stage and a host-
dependent larval stage. We modeled this system in the
simplest way possible by assuming that the adult para-
sitoid emerges from parasitized hosts at a constant rate.

A more realistic and interesting exercise would be to
analyze a delay-differential model, which is a type of
model commonly used to represent host–parasitoid
interactions (reviewed by Nisbet 1997; Murdoch et al.
2003). We would obtain different results using delay-
differential equations: unstable equilibria would be more
likely and the parameter dependence of community
structure could change. Furthermore, a different type of
population cycle would arise in some parameter spaces,
which may be caused by the explicit consideration of the
developmental time lag of the parasitoid. Further anal-
yses are required to understand these consequences.

Mylius et al. (2001) explored a stage-structured IGP
model to evaluate resource, consumer (IG prey), and
predator (IG predator) interactions. They incorporated
stage structure into the consumer and found that the
invulnerable adult stage affected community structure.

According to their results, the adult stage is a refuge
from predation for the IG prey, which then becomes
more likely to maintain its population. However, the
equilibria were always locally stable, contrary to our
results. In their model, the juvenile IG prey attacks the
resource and produces offspring, whereas it does not in
our model because we assumed host–parasitoid inter-
action (the parasitoid in the host does not attack other
hosts). This difference in the assumptions of the two
models creates an essential difference in the stability of
the system. The two models also differ in linearity
among species interactions. Introducing non-linearity
may lead to alternative stable states (Holt and Polis
1997). If a type-II function is assumed in our model, as
in Mylius et al. (2001), we will obtain similar bistability
at intermediate productivity, but the equilibria would be
unstable for some parameter range.

In general, incorporating stage structure that is a
refuge from predation has a stabilizing effect on popu-
lation dynamics (e.g., MacNair 1987). However, we
showed that the refuge had a destabilizing effect, which
is in marked contrast to previous studies. The destabi-
lizing effect occurred because the host–parasitoid inter-
action involves a time lag before the parasitoid emerges
from the parasitized host after the parasitoid egg is laid.
However, the instability would be weakened if the vul-
nerable juveniles reproduced by attacking the resource,
because the time lag between birth and reproduction
would be reduced. This type of interaction would sta-
bilize the system of traditional prey–predator models
with prey infection (Fig.1b) and the system described by
Mylius et al. (2001).

Researchers have used stage-structured models to
model insect communities. Therefore, the stage structure
of both the host and predator should also be considered
in our model, because natural insect communities in-
clude species with various types of life history, and a
number of previous models have shown that stage
structure has a large effect on the results (reviewed by
Murdoch et al. 2003). For example, different parasitoids
may attack different developmental stages of the same
host (Briggs 1993; Briggs et al. 1993; see also Haigh and
Maynard Smith 1972; May and Hassell 1981). Some
parasitoids (hyperparasitoids) may attack hosts that
have been parasitized by other parasitoids (May and
Hassell 1981; Briggs 1993). However, no researchers
have rigorously explored a model for the IG interaction
among host, parasitoid, and predator, although this
interaction is widespread among insect communities.
Therefore, it will be necessary to extend the present
model to advance our understanding of the dynamics of
natural insect communities.
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Appendix A

Existence and local stability of equilibria

Here, we show the details of the mathematical
analyses to obtain the parameter conditions for Eqs. 3a,
b to 6a–6c. The characteristic equation for E1 is
(A+r)(A � ydS*1+dq)(A

2+a1 A+a2) (A is the eigen-
value), where

a1 ¼ hþ dp; ð10aÞ

and

a2 ¼ h dp � xkS�1
� �

: ð10bÞ

E1 is locally stable when the real parts of the roots of the
characteristic equation are all negative. Because r and a1
are always positive, it is required that ydS*1�dq<0 and
a2>0. These inequalities provide the following condi-
tions:

y\
dq
Kd

; ð11aÞ

and

x\
dp
Kk

: ð11bÞ

The characteristic equation for E2 is
(A2+a1A+a2) (A

2+a3A+a4 )=0, where

a1 ¼
r
K

S�2 ; ð12aÞ

a2 ¼ y2dS�2Q�2; ð12bÞ

a3 ¼ zQ�2 þ dp þ h; ð12cÞ

and

a4 ¼ dp zQ�2 þ h
� �

� hxkS�2 : ð12dÞ

Therefore, E2 is locally stable when ai>0 (i=1–4). From
Eq. (2b), S2* is always positive and Q2* is positive when

y >
dq
Kd

: ð13aÞ

Under these conditions, ai>0 (i=1–3). Another condi-
tion, a4>0, provides that

z >
Khy dqkx� dpdy

� �

rdp Kdy � dq
� � : ð13bÞ

The characteristic equation for E3 is
(A�ydS*3�zdI*3+dq)(A

3+a1 A
2+a2 A+a3)=0, where

a1 ¼
r
K

S�3 þ dp þ h; ð14aÞ

a2 ¼
r dp þ h
� �

K
S�3 ; ð14bÞ

and

a3 ¼
rdph

K
K � S�3
� �

: ð14cÞ

The first requirement for the local stability of E3 is
ydS*3+zdI*3�dq<0, and therefore,

z\
Khkx dqkx� dpdy

� �

rdpd Kkx� dp
� � : ð15aÞ

From the Routh-Hurwitz criteria, it is also necessary
that ai>0 (i=1–3) and a1a2�a3>0. Because equilibrium
densities should be positive, ai>0 (i=1–3). From Eq. 2c,
K�S*3>0 is equivalent to

x >
dp
Kk

: ð15bÞ

Moreover, a1a2�a3>0 provides

x\
X þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X 2 þ 4rhdp dp þ h

� �q

2Khk
ð15cÞ

where X=(dp+h)2+dph.
Finally, the characteristic equation for E4 is

A4+a1A
3+a2A

2+a3A+a4=0, where

a1 ¼ dp þ
r
K

S�4 þ h
S�4
S�3
; ð16aÞ

a2 ¼
r
K

S�4 dp þ h
S�4
S�3

� �
þ d y2S�4 þ z2I�4
� �

Q�4; ð16bÞ

a3 ¼
r
K

dz2S�4 I�4Q�4 þ dpd y2S�4 þ z2I�4
� �

Q�4

þ h
S�4
S�3

dpxP �4 þ dqyQ�4
� �

; ð16cÞ

and

a4 ¼
r
K

dpdz2S�4 I�4Q�4: ð16dÞ

From the Routh-Hurwitz criteria, E4 is locally stable
when ai>0 (i=1–4), a1a2�a3>0, and

a1a2a3�a32�a12a4>0. As a1a2a3�a32�a12a4>0 satisfies
a1a2�a3>0 when ai>0 (i=1–4), the condition
a1a2�a3>0 need not be examined because equilibrium
densities should be positive, i.e., ai>0 (i=1–4). From
Eq. 2d, the condition for positive equilibrium densities is

rdp Kdy � dq
� �

Khy dqkx� dpdy
� �\

1

z
\

rdpd Kkx� dp
� �

Khkx dqkx� dpdy
� � : ð17aÞ

dp
xk

\
dq
yd
: ð17bÞ

The rest condition is

a1a2a3 � a2
3 � a2

1a4 > 0: ð17cÞ
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Appendix B

Parameter effects

We considered the effects of the parameters on the
boundary conditions described by inequalities 3a, b to
6a–c. First, inequalities 3a and 4a represent the bound-
ary between regions I and II, that is, the required con-
ditions for the predator to invade the host population.
This threshold decreases when the predator has a higher
fecundity (k) or a lower mortality rate (dp), indicating
that the predator is more likely to persist when its po-
tential population growth rate is high. Because a host
with a large carrying capacity (K) should facilitate sus-
taining the parasitoid population, this threshold de-
creases with increasing K.

Inequalities 5a and 6a represent the boundaries
between regions III and IV and between iii and iv,
respectively; these represent the required conditions for
invasion of the host–parasitoid system by the predator.
The threshold decreases and regions III and iii are
reduced when the predator has a higher fecundity (k)
or a lower mortality rate (dp), indicating that the
predator is more likely to persist when its potential
population growth rate is high. The threshold also
decreases when the potential parasitoid growth rate is
low, i.e., when the parasitoid has a lower fecundity (d),
a higher mortality rate (dq), or a longer latent period
(1/h). Increases in potential host growth rate (r or K)
also decrease this threshold, suggesting that the pred-
ator is more likely to persist when the resource is
abundant. In general, when the predator is relatively
more efficient in its growth than the parasitoid, this
boundary shifts downward in Fig. 2, indicating that
the predator would be more likely to invade the host–
parasitoid system.

Inequality 3b represents the boundary between re-
gions I and III, i.e., the required condition for invasion
of the host population by the parasitoid. This bound-
ary exhibits a similar pattern of shifts to that exhibited
by the boundary between regions I and II. This
threshold decreases with increases in potential parasit-
oid growth rate (higher k or lower dp) and with
increasing host carrying capacity (K), suggesting that
the parasitoid is more likely to invade the host popu-
lation when its growth is efficient or the resource is in
good condition.

Inequality 4b represents the boundary between re-
gions II and IV, i.e., the required condition for invasion
of the host–predator system by the parasitoid. This
boundary exhibits a contrasting pattern of shifts to that
exhibited by the boundaries between regions III and IV
and between iii and iv. This threshold increases with
increasing potential parasitoid growth rate (higher k,
lower dp, or higher h) and decreases with decreasing
potential predator growth rate (lower d or higher dq),
suggesting that when the growth potential of the
parasitoid is relatively more efficient than that of the

predator, the boundary shifts upward in Fig. 2, indi-
cating that the parasitoid would be more likely to per-
sist. Moreover, this threshold decreases with increasing
host growth rate (r or K), suggesting that the parasitoid
is more likely to be excluded from the three-species
system when the resource is abundant.

Inequality 5c represents the boundary between re-
gions III and iii, i.e., the required condition for the
host–parasitoid system to be stable, suggesting that the
system is more likely to be stable when the parasitoid
has a low fecundity (k) or a high mortality rate (dp).
The dependency of stability on h is complex because
this threshold is a unimodal function of h. While
increasing the latent period (1/h) has a stabilizing
effect, E3 is more likely to be stable when the latent
period is extremely short, indicating that short latent
periods eliminate the time delay in host–parasitoid
interactions.
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Hall SR, Duffy MA, Cáceres CE (2005) Selective predation and
productivity jointly drive complex behavior in host–parasite
systems. Am Nat 165:70–81

148



Han L, Ma Z (2001) Four predator prey models with infectious
diseases. Math Comput Model 34:849–858. DOI10.1016/S0895-
7177(01)00104-2

Hethcote HW, Wang W, Han L, Ma Z (2004) A predator–prey
model with infected prey. Theor Popul Biol 66:259–268.
DOI10.1016/j.tpb.2004.06.010

Holt RD, Polis GA (1997) A theoretical framework for intraguild
predation. Am Nat 149:755–764

Kaneko S (2002) Aphid-attending ants increase the number of
emerging adults of the aphid’s primary parasitoid and hyper-
parasitoids by repelling intraguild predation. Entomol Sci
5:131–146

Kaneko S (2003a) Different impacts of two species of aphid-
attending ants with different aggressiveness on the number of
emerging adults of the aphid’s primary parasitoid and hyper-
parasitoids. Ecol Res 18:199–212. DOI 10.1046/j.1440-
1703.2003.00547.x

Kaneko S (2003b) Impacts of two ants, Lasius niger and Pristo-
myrmex pungens (Hymenoptera: Formicidae), attending the
brown citrus aphid, Toxoptera citricidus (Homoptera: Aphidi-
dae), on the parasitism of the aphid by the primary parasitoid,
Lysiphlebus japonicus (Hymenoptera: Aphidiidae), and its larval
survival. Appl Entomol Zool 38:347–357. DOI 10.1303/
aez.2003.347

Lenbury Y, Rattanamongkonkul S, Tumrasvin N, Amornsamankul
S (1999)Predator–prey interaction coupled byparasitic infection:
limit cycles and chaotic behavior. Math Comput Model 30:131–
146. DOI 10.1016/S0895-7177(99)00186-7

MacNair JN (1987) A reconciliation of simple and complex models
of age-dependent predation. Theor Popul Biol 32:383–392

Manage PM, Kawabata Z, Nakano S, Nishibe Y (2002) Effect of
heterotrophic nanoflagellates on the loss of virus-like particles
in pond water. Ecol Res 17:473–479. DOI 10.1046/j.1440-
1703.2002.00504.x

May RM, Hassell MP (1981) The dynamics of multiparasitoid–
host interactions. Am Nat 117:234–261

McCann K, Hastings A (1997) Re-evaluating the omnivory
stability relationship in food webs. Proc R Soc Biol Sci
264:1249–1254. DOI 10.1098/rspb.1997.0172
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