The Impacts of Climate Change on the Hydrology and Water Resources of the Seyhan River Basin, Turkey

Hydrology and Water Resources Sub-Group
Katsuyuki FUJINAWA, Kenji TANAKA, Yoichi FUJIHARA, and Toshiharu KOJIRI

1 Geo-Environmental Engineering, Faculty of Engineering, Shinshu University, 550 Wakasato, Nagano, Nagano 380-8533
2,4 Disaster Prevention Research Institute, Kyoto University, Gokasho, Uji 611-0011
3 Research Institute for Humanity and Nature, 457-4 Kamigamo-motoyama, Kita-Ku, Kyoto 603-8047

1. Introduction

This report assesses the impacts of global warming on the hydrology and water resources of the Seyhan River Basin, Turkey. The ICCAP Hydrology and Water Resources sub-group consists of three groups focusing on (a) groundwater (Dr. Fujinawa, Shinshu University), (b) surface energy and the water balance (Dr. Tanaka, Kyoto University), and (c) water resources (Dr. Fujihara, RIHN). Although these groups act individually, they exchange data to integrate the hydrology sub-group (Figure 1).

Section 2 of this paper summarizes the methods used and results found by these groups. Conclusions and suggestions based on the results are described in Section 3. Detailed descriptions of each group follow this paper, as separate reports.

Fig.1 The ICCAP hydrology sub-group.

2. Methods and Results

2.1 Groundwater

A two-dimensional groundwater flow/mass transport model, referred to as the Saltwater Intrusion by Finite Elements and Characteristics (SIFEC) model, was developed and applied under various scenarios to assess the impacts of climate change on the subsurface water environment of the lower Seyhan River Basin (LSRB), Turkey.

Following calibration processes (Figure 2 shows the current salinity distribution in the aquifer), projections for assessing the impacts of climate change on the subsurface water environment of the LSRB were performed for various scenarios based on adopted sea-level rise and climatic elements, irrigation practices, river runoff, and groundwater abstraction (see Fujinawa and Fujihara, 2007). Outputs of the projections are explained in terms of salinity of the Akyatan lagoon and groundwater, the groundwater table and velocity, salt accumulation on land, and water-logging. The results are summarized below.

The combination of sea-level rise by as much as 0.88 m/century, increasing evaporation, and reduced precipitation will cause a significant increase in salinity in the lagoon (Figure 3). Increased salinity in the lagoon will in turn deteriorate the groundwater quality. Groundwater salinity may drastically increase first beneath the lagoon (Figure 4) and then further inland in the aquifer.

The buildup of a high-saline zone in the aquifer beneath the lagoon could reduce the freshwater lens in the sand dune aquifer and also cause water-logging on the land surface (see sand dune area of Figure 5). Water-logging and increased salinity in shallow groundwater may cause severe accumulation of salt on the land surface.

Increasing evaporation, sea-revel rise, and increasing groundwater abstraction may all con-
tribute to salt accumulation. Thus, drainage measures are strongly recommended in the future to minimize the impacts of salt accumulation on the land surface. The groundwater table may decline significantly in accordance with enhanced groundwater abstraction (Figure 5).

2.2 Surface Energy and Water Balance

Surface energy and water balance components and related hydrological variables of the Seyhan River Basin were estimated using an off-line simulation by the Land Surface Model (LSM) forced by the product of the Regional Climate Model (RCM) for both present and future (warm-up) conditions. The simulation period was from 1994 to 2003 for the present climate condition. For the future climate condition, two products were produced from different general circulation model (GCM) results (Meteorological Research Institute [MRI] and Center for Climate System Research [CCSR]). For the landcover condition, three land use scenarios (A0: no adaptation, A1: adaptation 1, A2: adaptation 2) were used. By combining climate conditions and land-use scenarios, six simulations were conducted for the future.

Maize and citrus were selected to represent irrigated crops. Based on information from the Irrigation and Drainage sub-group, the irrigation periods for maize and citrus were set as 23 May to 6 August and 14 May to 9 October, respectively. For the future climate simulation, the growing period was shortened by 10 days, considering faster plant growth under warmer conditions.

The SPOT VEGETATION Product and ECOCLIMAP database allow for good descriptions of the spatial distribution and time evolution of vegetation parameters. For consistency with the landcover condition, vegetation parameters were changed accordingly for the future land-use adaptation scenario by applying the average seasonal cycle for each vegetation class.

Figures 6-9 show the annual (10-year average) water balance components (precipitation, runoff, snowfall, maximum snow water equivalent [SWE]) for present and future climates (A0). Precipitation will decrease for the entire Seyhan basin, with particular reductions of more than 250 mm in the middle and delta regions. Maximum SWE is almost 0.4 Gt in the present climate but will decrease to as little as 0.1 Gt under the future climate (Figure 10). For the Seyhan delta (irrigated area), annual evaporation is about 800 mm, and about 500 mm of irrigation water must be supplied to maintain soil wetness during the growing
Fig. 6 Annual precipitation of present climate and its difference in MRI and CCSR run

Fig. 7 Annual runoff of present climate and its difference in MRI and CCSR run

Fig. 8 Annual snowfall of present climate and its difference in MRI and CCSR run

Fig. 9 Maximum SWE of present climate and its difference in MRI and CCSR run
season in the hot, dry summer. While precipitation will decrease over the whole basin, evaporation will increase in some parts. This coincides with the area of large SWE decreases. As a result of the reduced snow cover, those areas will receive more shortwave radiation (albedo effect). This increased energy will contribute to the increased evaporation in spring. Although the period for crop maturation will be shortened, the amount of irrigation water required is projected to increase because of the higher evaporation demand during the growing season and the reduction in soil moisture at the beginning of the growing period.

As a basin average, precipitation is projected to decrease by about 170 mm, while evapotranspiration and runoff will decrease by about 40 mm and 110 mm, respectively (Table 1). Considering the amount of the current water balance component, the impact on runoff is significantly large.

Table 1 Basin average annual water balance components

<table>
<thead>
<tr>
<th>unit:mm</th>
<th>Present</th>
<th>Future(A0)</th>
<th>Future(A1)</th>
<th>Future(A2)</th>
<th>diff(A0)</th>
<th>diff(A1)</th>
<th>diff(A2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prec</td>
<td>634.0</td>
<td>464.3</td>
<td>464.3</td>
<td>464.3</td>
<td>-169.7</td>
<td>-169.7</td>
<td>-169.7</td>
</tr>
<tr>
<td>Evap</td>
<td>411.3</td>
<td>373.9</td>
<td>365.4</td>
<td>378.9</td>
<td>-37.5</td>
<td>-45.9</td>
<td>-32.4</td>
</tr>
<tr>
<td>Runoff</td>
<td>281.6</td>
<td>168.9</td>
<td>168.1</td>
<td>170.4</td>
<td>-112.6</td>
<td>-113.5</td>
<td>-111.2</td>
</tr>
<tr>
<td>Irrig</td>
<td>53.8</td>
<td>69.7</td>
<td>60.4</td>
<td>76.4</td>
<td>15.9</td>
<td>6.6</td>
<td>22.5</td>
</tr>
<tr>
<td>delS</td>
<td>-5.0</td>
<td>-8.7</td>
<td>-8.8</td>
<td>-8.7</td>
<td>-3.7</td>
<td>-3.7</td>
<td>-3.6</td>
</tr>
</tbody>
</table>

including Urban Canopy (SiBUC) LSM to estimate the surface energy and water balance components. In addition, we employed the stream-flow routing model of Hydro-BEAM to simulate river discharge. We also developed reservoir models to simulate the reservoir operations of the Seyhan and Catalan dams.

The land and water use in the present period are the actual conditions in the Seyhan River Basin. For the future period, the following three scenarios were used: (a) Future: land and water use are the same as at present, (b) Adaptation 1: land and water use under low-investment conditions, and (c) Adaptation 2: land and water use under high-investment conditions. The results show the following.

Future inflow will decrease remarkably compared to that at present (Figure 11). In addition, decreases in April, May, and June inflow will be greater than those in other months, and the peak monthly inflow will occur earlier than at present.

The ratio of water withdrawal to discharge, which indicates the degree of water scarcity, is less than 0.4 at present (low water stress), but ranges from 0.4 to 0.7 in the future period and for Adaptation 1 (high water stress), and from 0.5 to 1.0 for Adaptation 2 (extremely high water stress).

The reservoir volume in the future and scenario 1 is less than at present, and in a few cases, the reservoir is empty (Figure 12). In contrast, in Adaptation 2, the reservoir is frequently empty. The reliabilities of the dams in the future and in Adaptation 1 range from 1 to 0.95 by the MRI and CCSR models. For Adaptation 2, the reliability ranges from 1 to 0.7 by the MRI and CCSR (Figure 13).

Although the ratio of water withdrawal to discharge will increase due to the effects of global warming (decreased discharge), it would be pos-
It is possible to meet water demands using the water resources system in the future case and in Adaptation 1. In contrast, the effects of global warming and the increased demand for water in the upper basin will lead to water scarcity for the Lower Seyhan Irrigation Project (LSIP) area in Adaptation 2.

3. Conclusions and Suggestions

The results suggest the following for the Seyhan River Basin:

1. The direct impacts of sea-level rise on salinity will not be serious. Nevertheless, the combination of sea-level rise, increasing evaporation, and reduced precipitation could cause a significant increase in salinity in the lagoon. Therefore, further groundwater abstraction will draw salt water.

2. The buildup of a high-saline zone in the aquifer beneath the lagoon could cause waterlogging on the land surface. Water logging and increased salinity in shallow groundwater may cause salt accumulation on the land surface. The area planned for LSIP 4 will be unusable as irrigated land.

3. To minimize the impacts of salt accumulation on the land surface, drainage practices are strongly...
recommended in the future.

4. As a basin average, precipitation is projected to decrease by about 170 mm, while evapotranspiration and runoff will decrease by about 40 mm and 110 mm, respectively. Flood events will probably occur less frequently under global warming.

5. The expansion of irrigated land in the middle basin (increasing water demand) and the effects of global warming (decreasing river flow) will lead to water scarcity for the LSIP.

6. Quality control should be done to hydrological and meteorological data such as river flow, precipitation, temperature, and solar irradiation, and accurate databases should be created. In addition, attention should be paid to changes in these data to detect global warming and adapt to it.

7. Several observations should be made for mountainous areas. Snow should be observed and monitored on a daily basis. By observing the snow amount in winter, it is possible to forecast inflow, and it is relatively easy to operate reservoirs for flood control and water resource in the spring.

8. Forests will basically reduce river flow (increase transpiration). Therefore, in the case of an afforestation project, this effect should be considered.

References