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1. INTRODUCTION 
 

The Okhotsk Sea is one of the most biologically productive regions in the world, and it 
supports high fisheries production (Fig. 1). Several previous reports indicate that the primary 
productivity of the Okhotsk Sea is very high, especially on the continental shelf.(Sorokin and 
Sorokin, 1999; Saito et al., 1996) It has been reported that a major fraction of the phytoplankton 
in this sea are diatoms (e.g., Hanzawa et al., 1981), and previous observations revealed 
maximum diatom cell numbers in spring and minima in autumn (Ohwada, 1957; Hanzawa et al., 
1981). The Okhotsk Sea is well known as one of the southern most seasonal sea ice zones in the 
Northern Hemisphere. In winter, sea ice formation begins around Shantarsky Bay at the end of 
November, and sea ice extension reaches its maximum in late February or March. Most of the 
sea ice disappears by May. Sea ice in the Okhotsk Sea is generally advected southward by the 
prevailing northerly or northwesterly winds. In the south western part of the sea, thick 
“first-year” ice is primarily advected by the East Sakhalin Current (ESC). Some of the ice is 
advected towards the offshore warm region and melted, making the surface layer water fresher.  
Some of this water is then frozen again by cooling. This process leads to formation of “new ice” 
at ice edges (Ohsima et al., 2001). Therefore, the seasonal change of sea ice volume depends on 
climatic conditions, and has large inter-annual variations. The sea ice has been considered to 
play an important role in the high production at the ice edge in the Okhotsk Sea. A large number 
of studies paid mention on the spring bloom after the sea ice melting (for example at the Bering 
Sea; Niebauer and Alexnder, 1985). Matsumoto et al. (2004) analyzed the seasonal and 
interannual variability of Chl-a distributions in the Okhotsk Sea from 1998 to 2001. They 
concluded that the most important factor required to characterize spatial and temporal 
variability of spring blooms was the timing of sea ice retreat, while a secondary factor was the 
adjustment of insolation. Okunishi et al. (2005) showed that the beginning of the spring bloom 
in Okhotsk Sea depends on the adjustment of light environment, and the presence of sea ice 
controls light intensity in the surface water and thereby controls the timing of the spring bloom.  

In recent years the micronutrient, iron, has been shown to play a key role in limiting 
phytoplankton growth rates and structuring plankton communities over much of the world 
ocean, particularly in the high nitrate, low chlorophyll (HNLC) regions (Martin et al., 1989, 
1990, 1991; Martin, 1992; Helbling et al., 1991; Price et al., 1994; Takeda and Obata, 1995; de 
Baar et al., 1995; Coale et al., 1996; Landry et al., 1997; Takeda, 1998; Behrenfeld and Kolber, 
1999; Boyd and Harrison, 1999; Moore et al., 2000). Recently study shows that iron is an 



important factor controlling phytoplankton in the western subarctic Pacific (Tsuda et al., 2003). 
However, there is little information on iron concentration in the Okhotsk Sea. Tani et al. (2003) 
showed that Fe(III) solubility in the surface mixed layer was generally high and variable 
(0.3-0.7nM) in the Southern Okhotsk Sea during May-June 2000. However, it is not well 
known whether iron acts as a limiting factor on phytoplankton growth or not, and what is the 
main source of iron in the Okhotsk Sea. The purposes of this paper are to evaluate the role of 
iron in biological production, to examine the source of iron in the Okhotsk Sea by using a three 
dimensional ecosystem - physical coupled model including iron biogeochemistry. 

 
 

2. ECOLOGICAL MODEL DESCRIPTION 
 

Material flow of our ecosystem model is shown in Fig. 2. This model is based on 
Kawamiya el al. (1995) (referred to as KKYS hereinafter), which is a nitrogen-based model 
with 6 compartments (phytoplankton; Phy, zooplankton; Zoo, nitrate; NO3, ammonium; NH4, 
particulate organic matter; POM, dissolved organic matter; DOM). Iron compartments which 
were separated into four according to its source, are added to KKYS as shown in Fig.2 
(KKYS-Fe). In order to clarify the iron origin, four iron compartments are taken into 
consideration. We assumed that the process of iron-supply to the Okhotsk Sea are: 1) 
atmospheric loadings from Northeastern Asia (FEAIR), 2) riverine input from the Amur River 
(FERIV), 3) solution from sediment (FESED), and 4) feedback by the biological process of 
zooplankton and bacteria (FEBIO). We assumed that all of the dissolved iron is bioavailable and 
that particulate iron is not bioavailable (and therefore neglected in the model). We also suppose 
that the phytoplankton and zooplankton both have same Fe/N ratio 0.044 in [nmol : µmol], 
assuming carbon/ nitrogen ratio in plankton of 106: 16, based on Gregg (2002) and Gregg et al. 
(2003). We used the same iron/nitrogen ratio in the other compartments (POM, DOM). 

      
                                        



3. PHYSICAL MODEL 
 

POM (Blumberg and Mellor, 1987; Galperin and Mellor, 1990) was used for the physical 
model. This model is a three-dimensional, free surface, ocean model with a second moment 
turbulence closer scheme (Mellor and Yamada, 1982) to provide vertical mixing coefficients. 
The model domain extends from 34°N to 63°N and from 127°E to 166°E (Fig. 1). The 
horizontal grid scale is 1/6°. There are 15 vertical levels with bottom-followed sigma 
coordinate. The sigma layers were divided to: 0, 0.00313, 0.00625, 0.0125, 0.025, 0.05, 0.1, 0.2, 
0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1. The surface drag coefficients were used as follows; 

dC =1.6*10-3  for  W < 7 m/s                                    (1) 

dC =2.5*10-3  for  W >10 m/s                                    (2) 
with a smooth transition for wind speeds between 7 and 10 m/s (Csandy, 1982). The time steps 
for calculating the baroclinic (internal mode) and barotopic (external mode) cycles were taken 
as 300 and 10 seconds, respectively. At the solid walls of the boundary the normal components 
of the velocity were set to zero, while at the open boundaries of the computational domain, we 
specified the conditions of radiation and smoothing of the tangential component. For the sea 
elevation at these open boundaries, a simple non-gradient condition was assumed. If 
temperature and salinity were advected into the model domain by inflow velocity at open 
boundaries, temperature and salinity of the World Ocean Atlas 2001 (WOA 2001) monthly data 
were used by interpolating into each time step. Under outflow conditions, the radiation 
condition is adapted at the open boundary. The climatological data from WOA 2001 is also used 
as initial conditions of temperatures and salinity. The model is run for 250 days in a diagnostic 
mode (holding the density field unchanged) to obtain velocity and sea surface height field by 
using climatological wind stress by daSilva et al. (1994). After this initial run, the physical 
fields are used for the initial condition of coupled model. 
 
 

4. RESULTS AND DISCUSSION 
 

Saitoh et al. (1996) showed that the spring bloom was usually formed between April and 
May in the Okhotsk Sea based on the monthly coastal zone color scanner (CZCS)- chlorophyll 
(Chl) imagery from 1978 until 1986. Fig 7 shows sea surface nitrate distribution simulated by 
KKYS and KKYS-FE together with the observed value from WOA in March. In March, before 
a spring bloom, both results show good agreement with the observation. As is shown in Fig. 7, 
relatively high nitrate concentration can be found in the northwestern Okhotsk Sea. After a 
spring boom (July), the sea surface nitrate is depleted in almost all area of the Okhotsk Sea (Fig. 
8). Both of KKYS and KKYS-FE’ show almost the same feature as WOA data. On the other 
hand, surface nitrate concentration is high (>5µM) in the Northwestern Pacific. KKYS cannot 
reproduce this surface nitrate distribution, while KKYS-FE shows a similar distribution there.  

The spring bloom in 2001 begins in the southern and northeastern parts of the Okhotsk 
Sea in May, and moves toward the southern and northeastern parts in June (Fig. 9(a), Fig. 10(a)). 
Both of KKYS and KKYS-FE can reproduce this characteristic features of spatial distribution 



of the phytoplankton in spring bloom in the Okhotsk Sea (Fig. 9(b, c), Fig. 10(b, c)). 
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